| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expgt0b.n |
|
| 2 |
|
expgt0b.m |
|
| 3 |
|
expgt0b.1 |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
nnzd |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
|
expgt0 |
|
| 9 |
4 6 7 8
|
syl3anc |
|
| 10 |
9
|
ex |
|
| 11 |
|
0red |
|
| 12 |
11 1
|
lttrid |
|
| 13 |
12
|
notbid |
|
| 14 |
|
notnotr |
|
| 15 |
|
0re |
|
| 16 |
15
|
ltnri |
|
| 17 |
2
|
0expd |
|
| 18 |
17
|
breq2d |
|
| 19 |
16 18
|
mtbiri |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
oveq1d |
|
| 24 |
23
|
breq2d |
|
| 25 |
20 24
|
mtbird |
|
| 26 |
25
|
ex |
|
| 27 |
1
|
renegcld |
|
| 28 |
27
|
adantr |
|
| 29 |
5
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
expgt0 |
|
| 32 |
28 29 30 31
|
syl3anc |
|
| 33 |
32
|
ex |
|
| 34 |
1
|
recnd |
|
| 35 |
|
oexpneg |
|
| 36 |
34 2 3 35
|
syl3anc |
|
| 37 |
36
|
breq2d |
|
| 38 |
37
|
biimpd |
|
| 39 |
2
|
nnnn0d |
|
| 40 |
1 39
|
reexpcld |
|
| 41 |
40
|
renegcld |
|
| 42 |
11 41
|
lttrid |
|
| 43 |
|
pm2.46 |
|
| 44 |
42 43
|
biimtrdi |
|
| 45 |
33 38 44
|
3syld |
|
| 46 |
1
|
lt0neg1d |
|
| 47 |
40
|
lt0neg2d |
|
| 48 |
47
|
notbid |
|
| 49 |
45 46 48
|
3imtr4d |
|
| 50 |
26 49
|
jaod |
|
| 51 |
14 50
|
syl5 |
|
| 52 |
13 51
|
sylbid |
|
| 53 |
10 52
|
impcon4bid |
|