Metamath Proof Explorer


Theorem expgt0b

Description: A real number A raised to an odd integer power is positive iff it is positive. (Contributed by SN, 4-Mar-2023) Use the more standard -. 2 || N (Revised by Thierry Arnoux, 14-Jun-2025)

Ref Expression
Hypotheses expgt0b.n φ A
expgt0b.m φ N
expgt0b.1 φ ¬ 2 N
Assertion expgt0b φ 0 < A 0 < A N

Proof

Step Hyp Ref Expression
1 expgt0b.n φ A
2 expgt0b.m φ N
3 expgt0b.1 φ ¬ 2 N
4 1 adantr φ 0 < A A
5 2 nnzd φ N
6 5 adantr φ 0 < A N
7 simpr φ 0 < A 0 < A
8 expgt0 A N 0 < A 0 < A N
9 4 6 7 8 syl3anc φ 0 < A 0 < A N
10 9 ex φ 0 < A 0 < A N
11 0red φ 0
12 11 1 lttrid φ 0 < A ¬ 0 = A A < 0
13 12 notbid φ ¬ 0 < A ¬ ¬ 0 = A A < 0
14 notnotr ¬ ¬ 0 = A A < 0 0 = A A < 0
15 0re 0
16 15 ltnri ¬ 0 < 0
17 2 0expd φ 0 N = 0
18 17 breq2d φ 0 < 0 N 0 < 0
19 16 18 mtbiri φ ¬ 0 < 0 N
20 19 adantr φ 0 = A ¬ 0 < 0 N
21 simpr φ 0 = A 0 = A
22 21 eqcomd φ 0 = A A = 0
23 22 oveq1d φ 0 = A A N = 0 N
24 23 breq2d φ 0 = A 0 < A N 0 < 0 N
25 20 24 mtbird φ 0 = A ¬ 0 < A N
26 25 ex φ 0 = A ¬ 0 < A N
27 1 renegcld φ A
28 27 adantr φ 0 < A A
29 5 adantr φ 0 < A N
30 simpr φ 0 < A 0 < A
31 expgt0 A N 0 < A 0 < A N
32 28 29 30 31 syl3anc φ 0 < A 0 < A N
33 32 ex φ 0 < A 0 < A N
34 1 recnd φ A
35 oexpneg A N ¬ 2 N A N = A N
36 34 2 3 35 syl3anc φ A N = A N
37 36 breq2d φ 0 < A N 0 < A N
38 37 biimpd φ 0 < A N 0 < A N
39 2 nnnn0d φ N 0
40 1 39 reexpcld φ A N
41 40 renegcld φ A N
42 11 41 lttrid φ 0 < A N ¬ 0 = A N A N < 0
43 pm2.46 ¬ 0 = A N A N < 0 ¬ A N < 0
44 42 43 biimtrdi φ 0 < A N ¬ A N < 0
45 33 38 44 3syld φ 0 < A ¬ A N < 0
46 1 lt0neg1d φ A < 0 0 < A
47 40 lt0neg2d φ 0 < A N A N < 0
48 47 notbid φ ¬ 0 < A N ¬ A N < 0
49 45 46 48 3imtr4d φ A < 0 ¬ 0 < A N
50 26 49 jaod φ 0 = A A < 0 ¬ 0 < A N
51 14 50 syl5 φ ¬ ¬ 0 = A A < 0 ¬ 0 < A N
52 13 51 sylbid φ ¬ 0 < A ¬ 0 < A N
53 10 52 impcon4bid φ 0 < A 0 < A N