Step |
Hyp |
Ref |
Expression |
1 |
|
expgt0b.n |
|
2 |
|
expgt0b.m |
|
3 |
|
expgt0b.1 |
|
4 |
1
|
adantr |
|
5 |
2
|
nnzd |
|
6 |
5
|
adantr |
|
7 |
|
simpr |
|
8 |
|
expgt0 |
|
9 |
4 6 7 8
|
syl3anc |
|
10 |
9
|
ex |
|
11 |
|
0red |
|
12 |
11 1
|
lttrid |
|
13 |
12
|
notbid |
|
14 |
|
notnotr |
|
15 |
|
0re |
|
16 |
15
|
ltnri |
|
17 |
2
|
0expd |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
mtbiri |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
21
|
eqcomd |
|
23 |
22
|
oveq1d |
|
24 |
23
|
breq2d |
|
25 |
20 24
|
mtbird |
|
26 |
25
|
ex |
|
27 |
1
|
renegcld |
|
28 |
27
|
adantr |
|
29 |
5
|
adantr |
|
30 |
|
simpr |
|
31 |
|
expgt0 |
|
32 |
28 29 30 31
|
syl3anc |
|
33 |
32
|
ex |
|
34 |
1
|
recnd |
|
35 |
|
oexpneg |
|
36 |
34 2 3 35
|
syl3anc |
|
37 |
36
|
breq2d |
|
38 |
37
|
biimpd |
|
39 |
2
|
nnnn0d |
|
40 |
1 39
|
reexpcld |
|
41 |
40
|
renegcld |
|
42 |
11 41
|
lttrid |
|
43 |
|
pm2.46 |
|
44 |
42 43
|
biimtrdi |
|
45 |
33 38 44
|
3syld |
|
46 |
1
|
lt0neg1d |
|
47 |
40
|
lt0neg2d |
|
48 |
47
|
notbid |
|
49 |
45 46 48
|
3imtr4d |
|
50 |
26 49
|
jaod |
|
51 |
14 50
|
syl5 |
|
52 |
13 51
|
sylbid |
|
53 |
10 52
|
impcon4bid |
|