| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expgt0b.n | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | expgt0b.m | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | expgt0b.1 | ⊢ ( 𝜑  →  ¬  2  ∥  𝑁 ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 | 2 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝑁  ∈  ℤ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 8 |  | expgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 9 | 4 6 7 8 | syl3anc | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  0  <  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝜑  →  ( 0  <  𝐴  →  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 11 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 12 | 11 1 | lttrid | ⊢ ( 𝜑  →  ( 0  <  𝐴  ↔  ¬  ( 0  =  𝐴  ∨  𝐴  <  0 ) ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( 𝜑  →  ( ¬  0  <  𝐴  ↔  ¬  ¬  ( 0  =  𝐴  ∨  𝐴  <  0 ) ) ) | 
						
							| 14 |  | notnotr | ⊢ ( ¬  ¬  ( 0  =  𝐴  ∨  𝐴  <  0 )  →  ( 0  =  𝐴  ∨  𝐴  <  0 ) ) | 
						
							| 15 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 16 | 15 | ltnri | ⊢ ¬  0  <  0 | 
						
							| 17 | 2 | 0expd | ⊢ ( 𝜑  →  ( 0 ↑ 𝑁 )  =  0 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝜑  →  ( 0  <  ( 0 ↑ 𝑁 )  ↔  0  <  0 ) ) | 
						
							| 19 | 16 18 | mtbiri | ⊢ ( 𝜑  →  ¬  0  <  ( 0 ↑ 𝑁 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ¬  0  <  ( 0 ↑ 𝑁 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  0  =  𝐴 ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  𝐴  =  0 ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( 𝐴 ↑ 𝑁 )  =  ( 0 ↑ 𝑁 ) ) | 
						
							| 24 | 23 | breq2d | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ( 0  <  ( 𝐴 ↑ 𝑁 )  ↔  0  <  ( 0 ↑ 𝑁 ) ) ) | 
						
							| 25 | 20 24 | mtbird | ⊢ ( ( 𝜑  ∧  0  =  𝐴 )  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝜑  →  ( 0  =  𝐴  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 27 | 1 | renegcld | ⊢ ( 𝜑  →  - 𝐴  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝐴 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝐴 )  →  𝑁  ∈  ℤ ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  - 𝐴 )  →  0  <  - 𝐴 ) | 
						
							| 31 |  | expgt0 | ⊢ ( ( - 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℤ  ∧  0  <  - 𝐴 )  →  0  <  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 32 | 28 29 30 31 | syl3anc | ⊢ ( ( 𝜑  ∧  0  <  - 𝐴 )  →  0  <  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝜑  →  ( 0  <  - 𝐴  →  0  <  ( - 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 34 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 35 |  | oexpneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 36 | 34 2 3 35 | syl3anc | ⊢ ( 𝜑  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( 𝜑  →  ( 0  <  ( - 𝐴 ↑ 𝑁 )  ↔  0  <  - ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 38 | 37 | biimpd | ⊢ ( 𝜑  →  ( 0  <  ( - 𝐴 ↑ 𝑁 )  →  0  <  - ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 39 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 40 | 1 39 | reexpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 41 | 40 | renegcld | ⊢ ( 𝜑  →  - ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 42 | 11 41 | lttrid | ⊢ ( 𝜑  →  ( 0  <  - ( 𝐴 ↑ 𝑁 )  ↔  ¬  ( 0  =  - ( 𝐴 ↑ 𝑁 )  ∨  - ( 𝐴 ↑ 𝑁 )  <  0 ) ) ) | 
						
							| 43 |  | pm2.46 | ⊢ ( ¬  ( 0  =  - ( 𝐴 ↑ 𝑁 )  ∨  - ( 𝐴 ↑ 𝑁 )  <  0 )  →  ¬  - ( 𝐴 ↑ 𝑁 )  <  0 ) | 
						
							| 44 | 42 43 | biimtrdi | ⊢ ( 𝜑  →  ( 0  <  - ( 𝐴 ↑ 𝑁 )  →  ¬  - ( 𝐴 ↑ 𝑁 )  <  0 ) ) | 
						
							| 45 | 33 38 44 | 3syld | ⊢ ( 𝜑  →  ( 0  <  - 𝐴  →  ¬  - ( 𝐴 ↑ 𝑁 )  <  0 ) ) | 
						
							| 46 | 1 | lt0neg1d | ⊢ ( 𝜑  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 47 | 40 | lt0neg2d | ⊢ ( 𝜑  →  ( 0  <  ( 𝐴 ↑ 𝑁 )  ↔  - ( 𝐴 ↑ 𝑁 )  <  0 ) ) | 
						
							| 48 | 47 | notbid | ⊢ ( 𝜑  →  ( ¬  0  <  ( 𝐴 ↑ 𝑁 )  ↔  ¬  - ( 𝐴 ↑ 𝑁 )  <  0 ) ) | 
						
							| 49 | 45 46 48 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐴  <  0  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 50 | 26 49 | jaod | ⊢ ( 𝜑  →  ( ( 0  =  𝐴  ∨  𝐴  <  0 )  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 51 | 14 50 | syl5 | ⊢ ( 𝜑  →  ( ¬  ¬  ( 0  =  𝐴  ∨  𝐴  <  0 )  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 52 | 13 51 | sylbid | ⊢ ( 𝜑  →  ( ¬  0  <  𝐴  →  ¬  0  <  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 53 | 10 52 | impcon4bid | ⊢ ( 𝜑  →  ( 0  <  𝐴  ↔  0  <  ( 𝐴 ↑ 𝑁 ) ) ) |