Step |
Hyp |
Ref |
Expression |
1 |
|
expgt0b.n |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
expgt0b.m |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
expgt0b.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑁 ) |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
5 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝑁 ∈ ℤ ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
8 |
|
expgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 𝑁 ) ) |
9 |
4 6 7 8
|
syl3anc |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 𝑁 ) ) |
10 |
9
|
ex |
⊢ ( 𝜑 → ( 0 < 𝐴 → 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
11 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
12 |
11 1
|
lttrid |
⊢ ( 𝜑 → ( 0 < 𝐴 ↔ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) ) |
13 |
12
|
notbid |
⊢ ( 𝜑 → ( ¬ 0 < 𝐴 ↔ ¬ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) ) |
14 |
|
notnotr |
⊢ ( ¬ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) → ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) |
15 |
|
0re |
⊢ 0 ∈ ℝ |
16 |
15
|
ltnri |
⊢ ¬ 0 < 0 |
17 |
2
|
0expd |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) = 0 ) |
18 |
17
|
breq2d |
⊢ ( 𝜑 → ( 0 < ( 0 ↑ 𝑁 ) ↔ 0 < 0 ) ) |
19 |
16 18
|
mtbiri |
⊢ ( 𝜑 → ¬ 0 < ( 0 ↑ 𝑁 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ¬ 0 < ( 0 ↑ 𝑁 ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 0 = 𝐴 ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → 𝐴 = 0 ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
24 |
23
|
breq2d |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ( 0 < ( 𝐴 ↑ 𝑁 ) ↔ 0 < ( 0 ↑ 𝑁 ) ) ) |
25 |
20 24
|
mtbird |
⊢ ( ( 𝜑 ∧ 0 = 𝐴 ) → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( 0 = 𝐴 → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
27 |
1
|
renegcld |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐴 ) → - 𝐴 ∈ ℝ ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐴 ) → 𝑁 ∈ ℤ ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < - 𝐴 ) → 0 < - 𝐴 ) |
31 |
|
expgt0 |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < - 𝐴 ) → 0 < ( - 𝐴 ↑ 𝑁 ) ) |
32 |
28 29 30 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ 0 < - 𝐴 ) → 0 < ( - 𝐴 ↑ 𝑁 ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 0 < - 𝐴 → 0 < ( - 𝐴 ↑ 𝑁 ) ) ) |
34 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
35 |
|
oexpneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
36 |
34 2 3 35
|
syl3anc |
⊢ ( 𝜑 → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
37 |
36
|
breq2d |
⊢ ( 𝜑 → ( 0 < ( - 𝐴 ↑ 𝑁 ) ↔ 0 < - ( 𝐴 ↑ 𝑁 ) ) ) |
38 |
37
|
biimpd |
⊢ ( 𝜑 → ( 0 < ( - 𝐴 ↑ 𝑁 ) → 0 < - ( 𝐴 ↑ 𝑁 ) ) ) |
39 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
40 |
1 39
|
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
41 |
40
|
renegcld |
⊢ ( 𝜑 → - ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
42 |
11 41
|
lttrid |
⊢ ( 𝜑 → ( 0 < - ( 𝐴 ↑ 𝑁 ) ↔ ¬ ( 0 = - ( 𝐴 ↑ 𝑁 ) ∨ - ( 𝐴 ↑ 𝑁 ) < 0 ) ) ) |
43 |
|
pm2.46 |
⊢ ( ¬ ( 0 = - ( 𝐴 ↑ 𝑁 ) ∨ - ( 𝐴 ↑ 𝑁 ) < 0 ) → ¬ - ( 𝐴 ↑ 𝑁 ) < 0 ) |
44 |
42 43
|
biimtrdi |
⊢ ( 𝜑 → ( 0 < - ( 𝐴 ↑ 𝑁 ) → ¬ - ( 𝐴 ↑ 𝑁 ) < 0 ) ) |
45 |
33 38 44
|
3syld |
⊢ ( 𝜑 → ( 0 < - 𝐴 → ¬ - ( 𝐴 ↑ 𝑁 ) < 0 ) ) |
46 |
1
|
lt0neg1d |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
47 |
40
|
lt0neg2d |
⊢ ( 𝜑 → ( 0 < ( 𝐴 ↑ 𝑁 ) ↔ - ( 𝐴 ↑ 𝑁 ) < 0 ) ) |
48 |
47
|
notbid |
⊢ ( 𝜑 → ( ¬ 0 < ( 𝐴 ↑ 𝑁 ) ↔ ¬ - ( 𝐴 ↑ 𝑁 ) < 0 ) ) |
49 |
45 46 48
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐴 < 0 → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
50 |
26 49
|
jaod |
⊢ ( 𝜑 → ( ( 0 = 𝐴 ∨ 𝐴 < 0 ) → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
51 |
14 50
|
syl5 |
⊢ ( 𝜑 → ( ¬ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
52 |
13 51
|
sylbid |
⊢ ( 𝜑 → ( ¬ 0 < 𝐴 → ¬ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |
53 |
10 52
|
impcon4bid |
⊢ ( 𝜑 → ( 0 < 𝐴 ↔ 0 < ( 𝐴 ↑ 𝑁 ) ) ) |