Step |
Hyp |
Ref |
Expression |
1 |
|
expgt0b.n |
|- ( ph -> A e. RR ) |
2 |
|
expgt0b.m |
|- ( ph -> N e. NN ) |
3 |
|
expgt0b.1 |
|- ( ph -> -. 2 || N ) |
4 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
5 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
6 |
5
|
adantr |
|- ( ( ph /\ 0 < A ) -> N e. ZZ ) |
7 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
8 |
|
expgt0 |
|- ( ( A e. RR /\ N e. ZZ /\ 0 < A ) -> 0 < ( A ^ N ) ) |
9 |
4 6 7 8
|
syl3anc |
|- ( ( ph /\ 0 < A ) -> 0 < ( A ^ N ) ) |
10 |
9
|
ex |
|- ( ph -> ( 0 < A -> 0 < ( A ^ N ) ) ) |
11 |
|
0red |
|- ( ph -> 0 e. RR ) |
12 |
11 1
|
lttrid |
|- ( ph -> ( 0 < A <-> -. ( 0 = A \/ A < 0 ) ) ) |
13 |
12
|
notbid |
|- ( ph -> ( -. 0 < A <-> -. -. ( 0 = A \/ A < 0 ) ) ) |
14 |
|
notnotr |
|- ( -. -. ( 0 = A \/ A < 0 ) -> ( 0 = A \/ A < 0 ) ) |
15 |
|
0re |
|- 0 e. RR |
16 |
15
|
ltnri |
|- -. 0 < 0 |
17 |
2
|
0expd |
|- ( ph -> ( 0 ^ N ) = 0 ) |
18 |
17
|
breq2d |
|- ( ph -> ( 0 < ( 0 ^ N ) <-> 0 < 0 ) ) |
19 |
16 18
|
mtbiri |
|- ( ph -> -. 0 < ( 0 ^ N ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ 0 = A ) -> -. 0 < ( 0 ^ N ) ) |
21 |
|
simpr |
|- ( ( ph /\ 0 = A ) -> 0 = A ) |
22 |
21
|
eqcomd |
|- ( ( ph /\ 0 = A ) -> A = 0 ) |
23 |
22
|
oveq1d |
|- ( ( ph /\ 0 = A ) -> ( A ^ N ) = ( 0 ^ N ) ) |
24 |
23
|
breq2d |
|- ( ( ph /\ 0 = A ) -> ( 0 < ( A ^ N ) <-> 0 < ( 0 ^ N ) ) ) |
25 |
20 24
|
mtbird |
|- ( ( ph /\ 0 = A ) -> -. 0 < ( A ^ N ) ) |
26 |
25
|
ex |
|- ( ph -> ( 0 = A -> -. 0 < ( A ^ N ) ) ) |
27 |
1
|
renegcld |
|- ( ph -> -u A e. RR ) |
28 |
27
|
adantr |
|- ( ( ph /\ 0 < -u A ) -> -u A e. RR ) |
29 |
5
|
adantr |
|- ( ( ph /\ 0 < -u A ) -> N e. ZZ ) |
30 |
|
simpr |
|- ( ( ph /\ 0 < -u A ) -> 0 < -u A ) |
31 |
|
expgt0 |
|- ( ( -u A e. RR /\ N e. ZZ /\ 0 < -u A ) -> 0 < ( -u A ^ N ) ) |
32 |
28 29 30 31
|
syl3anc |
|- ( ( ph /\ 0 < -u A ) -> 0 < ( -u A ^ N ) ) |
33 |
32
|
ex |
|- ( ph -> ( 0 < -u A -> 0 < ( -u A ^ N ) ) ) |
34 |
1
|
recnd |
|- ( ph -> A e. CC ) |
35 |
|
oexpneg |
|- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
36 |
34 2 3 35
|
syl3anc |
|- ( ph -> ( -u A ^ N ) = -u ( A ^ N ) ) |
37 |
36
|
breq2d |
|- ( ph -> ( 0 < ( -u A ^ N ) <-> 0 < -u ( A ^ N ) ) ) |
38 |
37
|
biimpd |
|- ( ph -> ( 0 < ( -u A ^ N ) -> 0 < -u ( A ^ N ) ) ) |
39 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
40 |
1 39
|
reexpcld |
|- ( ph -> ( A ^ N ) e. RR ) |
41 |
40
|
renegcld |
|- ( ph -> -u ( A ^ N ) e. RR ) |
42 |
11 41
|
lttrid |
|- ( ph -> ( 0 < -u ( A ^ N ) <-> -. ( 0 = -u ( A ^ N ) \/ -u ( A ^ N ) < 0 ) ) ) |
43 |
|
pm2.46 |
|- ( -. ( 0 = -u ( A ^ N ) \/ -u ( A ^ N ) < 0 ) -> -. -u ( A ^ N ) < 0 ) |
44 |
42 43
|
biimtrdi |
|- ( ph -> ( 0 < -u ( A ^ N ) -> -. -u ( A ^ N ) < 0 ) ) |
45 |
33 38 44
|
3syld |
|- ( ph -> ( 0 < -u A -> -. -u ( A ^ N ) < 0 ) ) |
46 |
1
|
lt0neg1d |
|- ( ph -> ( A < 0 <-> 0 < -u A ) ) |
47 |
40
|
lt0neg2d |
|- ( ph -> ( 0 < ( A ^ N ) <-> -u ( A ^ N ) < 0 ) ) |
48 |
47
|
notbid |
|- ( ph -> ( -. 0 < ( A ^ N ) <-> -. -u ( A ^ N ) < 0 ) ) |
49 |
45 46 48
|
3imtr4d |
|- ( ph -> ( A < 0 -> -. 0 < ( A ^ N ) ) ) |
50 |
26 49
|
jaod |
|- ( ph -> ( ( 0 = A \/ A < 0 ) -> -. 0 < ( A ^ N ) ) ) |
51 |
14 50
|
syl5 |
|- ( ph -> ( -. -. ( 0 = A \/ A < 0 ) -> -. 0 < ( A ^ N ) ) ) |
52 |
13 51
|
sylbid |
|- ( ph -> ( -. 0 < A -> -. 0 < ( A ^ N ) ) ) |
53 |
10 52
|
impcon4bid |
|- ( ph -> ( 0 < A <-> 0 < ( A ^ N ) ) ) |