Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sub.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1sub.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
coe1sub.p |
⊢ − = ( -g ‘ 𝑌 ) |
4 |
|
coe1sub.q |
⊢ 𝑁 = ( -g ‘ 𝑅 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
6 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
7 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Grp ) |
9 |
2 3
|
grpsubcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
10 |
8 9
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐺 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
16 |
1 2 14 15
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹 − 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
17 |
5 11 12 13 16
|
syl31anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
18 |
8
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑌 ∈ Grp ) |
20 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) |
21 |
2 14 3
|
grpnpcan |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
22 |
19 20 12 21
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
23 |
22
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) = ( coe1 ‘ 𝐹 ) ) |
24 |
23
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
25 |
17 24
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
26 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
29 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
31 |
29 2 1 30
|
coe1f |
⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
33 |
32
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
35 |
34 2 1 30
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
37 |
36
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
38 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 − 𝐺 ) ) = ( coe1 ‘ ( 𝐹 − 𝐺 ) ) |
39 |
38 2 1 30
|
coe1f |
⊢ ( ( 𝐹 − 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
40 |
10 39
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
41 |
40
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
42 |
30 15 4
|
grpsubadd |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
43 |
28 33 37 41 42
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
44 |
25 43
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ) |
45 |
44
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |