| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1sub.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
coe1sub.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
coe1sub.p |
⊢ − = ( -g ‘ 𝑌 ) |
| 4 |
|
coe1sub.q |
⊢ 𝑁 = ( -g ‘ 𝑅 ) |
| 5 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 6 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
| 7 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Grp ) |
| 9 |
2 3
|
grpsubcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 10 |
8 9
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
| 12 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐺 ∈ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑋 ∈ ℕ0 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 16 |
1 2 14 15
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹 − 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 17 |
5 11 12 13 16
|
syl31anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 18 |
8
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑌 ∈ Grp ) |
| 20 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) |
| 21 |
2 14 3
|
grpnpcan |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
| 22 |
19 20 12 21
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) = 𝐹 ) |
| 23 |
22
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) = ( coe1 ‘ 𝐹 ) ) |
| 24 |
23
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝐹 − 𝐺 ) ( +g ‘ 𝑌 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 25 |
17 24
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 26 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 29 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 31 |
29 2 1 30
|
coe1f |
⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 |
31
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
| 35 |
34 2 1 30
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 |
35
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 37 |
36
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 − 𝐺 ) ) = ( coe1 ‘ ( 𝐹 − 𝐺 ) ) |
| 39 |
38 2 1 30
|
coe1f |
⊢ ( ( 𝐹 − 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 40 |
10 39
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 − 𝐺 ) ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 41 |
40
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 |
30 15 4
|
grpsubadd |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 43 |
28 33 37 41 42
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ↔ ( ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 44 |
25 43
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) ) |
| 45 |
44
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑋 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝑋 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑋 ) 𝑁 ( ( coe1 ‘ 𝐺 ) ‘ 𝑋 ) ) ) |