| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem1.1 |
|- ( ph -> X e. ZZ ) |
| 2 |
|
simpr |
|- ( ( ph /\ X = 0 ) -> X = 0 ) |
| 3 |
2
|
oveq1d |
|- ( ( ph /\ X = 0 ) -> ( X ^ 3 ) = ( 0 ^ 3 ) ) |
| 4 |
|
3nn |
|- 3 e. NN |
| 5 |
4
|
a1i |
|- ( ( ph /\ X = 0 ) -> 3 e. NN ) |
| 6 |
5
|
0expd |
|- ( ( ph /\ X = 0 ) -> ( 0 ^ 3 ) = 0 ) |
| 7 |
3 6
|
eqtrd |
|- ( ( ph /\ X = 0 ) -> ( X ^ 3 ) = 0 ) |
| 8 |
2
|
oveq1d |
|- ( ( ph /\ X = 0 ) -> ( X ^ 2 ) = ( 0 ^ 2 ) ) |
| 9 |
8
|
oveq2d |
|- ( ( ph /\ X = 0 ) -> ( -u 3 x. ( X ^ 2 ) ) = ( -u 3 x. ( 0 ^ 2 ) ) ) |
| 10 |
|
2nn |
|- 2 e. NN |
| 11 |
10
|
a1i |
|- ( ( ph /\ X = 0 ) -> 2 e. NN ) |
| 12 |
11
|
0expd |
|- ( ( ph /\ X = 0 ) -> ( 0 ^ 2 ) = 0 ) |
| 13 |
12
|
oveq2d |
|- ( ( ph /\ X = 0 ) -> ( -u 3 x. ( 0 ^ 2 ) ) = ( -u 3 x. 0 ) ) |
| 14 |
|
3nn0 |
|- 3 e. NN0 |
| 15 |
14
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 16 |
15
|
nn0cnd |
|- ( ph -> 3 e. CC ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ X = 0 ) -> 3 e. CC ) |
| 18 |
17
|
negcld |
|- ( ( ph /\ X = 0 ) -> -u 3 e. CC ) |
| 19 |
18
|
mul01d |
|- ( ( ph /\ X = 0 ) -> ( -u 3 x. 0 ) = 0 ) |
| 20 |
9 13 19
|
3eqtrd |
|- ( ( ph /\ X = 0 ) -> ( -u 3 x. ( X ^ 2 ) ) = 0 ) |
| 21 |
20
|
oveq1d |
|- ( ( ph /\ X = 0 ) -> ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) = ( 0 + 1 ) ) |
| 22 |
7 21
|
oveq12d |
|- ( ( ph /\ X = 0 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = ( 0 + ( 0 + 1 ) ) ) |
| 23 |
|
0cnd |
|- ( ( ph /\ X = 0 ) -> 0 e. CC ) |
| 24 |
|
1cnd |
|- ( ( ph /\ X = 0 ) -> 1 e. CC ) |
| 25 |
23 24
|
addcld |
|- ( ( ph /\ X = 0 ) -> ( 0 + 1 ) e. CC ) |
| 26 |
25
|
addlidd |
|- ( ( ph /\ X = 0 ) -> ( 0 + ( 0 + 1 ) ) = ( 0 + 1 ) ) |
| 27 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 28 |
27
|
addlidd |
|- ( ph -> ( 0 + 1 ) = 1 ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ X = 0 ) -> ( 0 + 1 ) = 1 ) |
| 30 |
22 26 29
|
3eqtrd |
|- ( ( ph /\ X = 0 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = 1 ) |
| 31 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 32 |
31
|
a1i |
|- ( ( ph /\ X = 0 ) -> 1 =/= 0 ) |
| 33 |
30 32
|
eqnetrd |
|- ( ( ph /\ X = 0 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 34 |
33
|
ad4ant14 |
|- ( ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) /\ X = 0 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 35 |
|
simpr |
|- ( ( ph /\ X = 1 ) -> X = 1 ) |
| 36 |
35
|
oveq1d |
|- ( ( ph /\ X = 1 ) -> ( X ^ 3 ) = ( 1 ^ 3 ) ) |
| 37 |
|
3z |
|- 3 e. ZZ |
| 38 |
|
1exp |
|- ( 3 e. ZZ -> ( 1 ^ 3 ) = 1 ) |
| 39 |
37 38
|
mp1i |
|- ( ( ph /\ X = 1 ) -> ( 1 ^ 3 ) = 1 ) |
| 40 |
36 39
|
eqtrd |
|- ( ( ph /\ X = 1 ) -> ( X ^ 3 ) = 1 ) |
| 41 |
35
|
oveq1d |
|- ( ( ph /\ X = 1 ) -> ( X ^ 2 ) = ( 1 ^ 2 ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ph /\ X = 1 ) -> ( -u 3 x. ( X ^ 2 ) ) = ( -u 3 x. ( 1 ^ 2 ) ) ) |
| 43 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 44 |
43
|
a1i |
|- ( ( ph /\ X = 1 ) -> ( 1 ^ 2 ) = 1 ) |
| 45 |
44
|
oveq2d |
|- ( ( ph /\ X = 1 ) -> ( -u 3 x. ( 1 ^ 2 ) ) = ( -u 3 x. 1 ) ) |
| 46 |
16
|
adantr |
|- ( ( ph /\ X = 1 ) -> 3 e. CC ) |
| 47 |
46
|
negcld |
|- ( ( ph /\ X = 1 ) -> -u 3 e. CC ) |
| 48 |
47
|
mulridd |
|- ( ( ph /\ X = 1 ) -> ( -u 3 x. 1 ) = -u 3 ) |
| 49 |
42 45 48
|
3eqtrd |
|- ( ( ph /\ X = 1 ) -> ( -u 3 x. ( X ^ 2 ) ) = -u 3 ) |
| 50 |
49
|
oveq1d |
|- ( ( ph /\ X = 1 ) -> ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) = ( -u 3 + 1 ) ) |
| 51 |
40 50
|
oveq12d |
|- ( ( ph /\ X = 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = ( 1 + ( -u 3 + 1 ) ) ) |
| 52 |
|
1cnd |
|- ( ( ph /\ X = 1 ) -> 1 e. CC ) |
| 53 |
47 52
|
addcomd |
|- ( ( ph /\ X = 1 ) -> ( -u 3 + 1 ) = ( 1 + -u 3 ) ) |
| 54 |
52 46
|
negsubd |
|- ( ( ph /\ X = 1 ) -> ( 1 + -u 3 ) = ( 1 - 3 ) ) |
| 55 |
53 54
|
eqtrd |
|- ( ( ph /\ X = 1 ) -> ( -u 3 + 1 ) = ( 1 - 3 ) ) |
| 56 |
55
|
oveq2d |
|- ( ( ph /\ X = 1 ) -> ( 1 + ( -u 3 + 1 ) ) = ( 1 + ( 1 - 3 ) ) ) |
| 57 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 58 |
57
|
a1i |
|- ( ( ph /\ X = 1 ) -> ( 1 + 1 ) = 2 ) |
| 59 |
58
|
oveq1d |
|- ( ( ph /\ X = 1 ) -> ( ( 1 + 1 ) - 3 ) = ( 2 - 3 ) ) |
| 60 |
52 52 46
|
addsubassd |
|- ( ( ph /\ X = 1 ) -> ( ( 1 + 1 ) - 3 ) = ( 1 + ( 1 - 3 ) ) ) |
| 61 |
|
2cnd |
|- ( ( ph /\ X = 1 ) -> 2 e. CC ) |
| 62 |
46 61
|
negsubdi2d |
|- ( ( ph /\ X = 1 ) -> -u ( 3 - 2 ) = ( 2 - 3 ) ) |
| 63 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 64 |
63
|
a1i |
|- ( ( ph /\ X = 1 ) -> ( 2 + 1 ) = 3 ) |
| 65 |
64
|
eqcomd |
|- ( ( ph /\ X = 1 ) -> 3 = ( 2 + 1 ) ) |
| 66 |
61 52 65
|
mvrladdd |
|- ( ( ph /\ X = 1 ) -> ( 3 - 2 ) = 1 ) |
| 67 |
66
|
negeqd |
|- ( ( ph /\ X = 1 ) -> -u ( 3 - 2 ) = -u 1 ) |
| 68 |
62 67
|
eqtr3d |
|- ( ( ph /\ X = 1 ) -> ( 2 - 3 ) = -u 1 ) |
| 69 |
59 60 68
|
3eqtr3d |
|- ( ( ph /\ X = 1 ) -> ( 1 + ( 1 - 3 ) ) = -u 1 ) |
| 70 |
51 56 69
|
3eqtrd |
|- ( ( ph /\ X = 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = -u 1 ) |
| 71 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 72 |
71
|
a1i |
|- ( ( ph /\ X = 1 ) -> -u 1 =/= 0 ) |
| 73 |
70 72
|
eqnetrd |
|- ( ( ph /\ X = 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 74 |
73
|
ad4ant14 |
|- ( ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) /\ X = 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 75 |
|
oveq1 |
|- ( X = 2 -> ( X ^ 3 ) = ( 2 ^ 3 ) ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ X = 2 ) -> ( X ^ 3 ) = ( 2 ^ 3 ) ) |
| 77 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
| 78 |
76 77
|
eqtrdi |
|- ( ( ph /\ X = 2 ) -> ( X ^ 3 ) = 8 ) |
| 79 |
1
|
zred |
|- ( ph -> X e. RR ) |
| 80 |
79
|
resqcld |
|- ( ph -> ( X ^ 2 ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ph -> ( X ^ 2 ) e. CC ) |
| 82 |
16 81
|
mulneg1d |
|- ( ph -> ( -u 3 x. ( X ^ 2 ) ) = -u ( 3 x. ( X ^ 2 ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ X = 2 ) -> ( -u 3 x. ( X ^ 2 ) ) = -u ( 3 x. ( X ^ 2 ) ) ) |
| 84 |
|
oveq1 |
|- ( X = 2 -> ( X ^ 2 ) = ( 2 ^ 2 ) ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ X = 2 ) -> ( X ^ 2 ) = ( 2 ^ 2 ) ) |
| 86 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 87 |
85 86
|
eqtrdi |
|- ( ( ph /\ X = 2 ) -> ( X ^ 2 ) = 4 ) |
| 88 |
87
|
oveq2d |
|- ( ( ph /\ X = 2 ) -> ( 3 x. ( X ^ 2 ) ) = ( 3 x. 4 ) ) |
| 89 |
88
|
negeqd |
|- ( ( ph /\ X = 2 ) -> -u ( 3 x. ( X ^ 2 ) ) = -u ( 3 x. 4 ) ) |
| 90 |
16
|
adantr |
|- ( ( ph /\ X = 2 ) -> 3 e. CC ) |
| 91 |
|
4cn |
|- 4 e. CC |
| 92 |
91
|
a1i |
|- ( ( ph /\ X = 2 ) -> 4 e. CC ) |
| 93 |
90 92
|
mulcomd |
|- ( ( ph /\ X = 2 ) -> ( 3 x. 4 ) = ( 4 x. 3 ) ) |
| 94 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
| 95 |
93 94
|
eqtrdi |
|- ( ( ph /\ X = 2 ) -> ( 3 x. 4 ) = ; 1 2 ) |
| 96 |
95
|
negeqd |
|- ( ( ph /\ X = 2 ) -> -u ( 3 x. 4 ) = -u ; 1 2 ) |
| 97 |
83 89 96
|
3eqtrd |
|- ( ( ph /\ X = 2 ) -> ( -u 3 x. ( X ^ 2 ) ) = -u ; 1 2 ) |
| 98 |
97
|
oveq1d |
|- ( ( ph /\ X = 2 ) -> ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) = ( -u ; 1 2 + 1 ) ) |
| 99 |
78 98
|
oveq12d |
|- ( ( ph /\ X = 2 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = ( 8 + ( -u ; 1 2 + 1 ) ) ) |
| 100 |
|
1nn0 |
|- 1 e. NN0 |
| 101 |
|
2nn0 |
|- 2 e. NN0 |
| 102 |
100 101
|
deccl |
|- ; 1 2 e. NN0 |
| 103 |
102
|
a1i |
|- ( ( ph /\ X = 2 ) -> ; 1 2 e. NN0 ) |
| 104 |
103
|
nn0cnd |
|- ( ( ph /\ X = 2 ) -> ; 1 2 e. CC ) |
| 105 |
104
|
negcld |
|- ( ( ph /\ X = 2 ) -> -u ; 1 2 e. CC ) |
| 106 |
|
1cnd |
|- ( ( ph /\ X = 2 ) -> 1 e. CC ) |
| 107 |
105 106
|
addcomd |
|- ( ( ph /\ X = 2 ) -> ( -u ; 1 2 + 1 ) = ( 1 + -u ; 1 2 ) ) |
| 108 |
106 104
|
negsubd |
|- ( ( ph /\ X = 2 ) -> ( 1 + -u ; 1 2 ) = ( 1 - ; 1 2 ) ) |
| 109 |
107 108
|
eqtrd |
|- ( ( ph /\ X = 2 ) -> ( -u ; 1 2 + 1 ) = ( 1 - ; 1 2 ) ) |
| 110 |
104 106
|
negsubdi2d |
|- ( ( ph /\ X = 2 ) -> -u ( ; 1 2 - 1 ) = ( 1 - ; 1 2 ) ) |
| 111 |
100 100
|
deccl |
|- ; 1 1 e. NN0 |
| 112 |
111
|
a1i |
|- ( ( ph /\ X = 2 ) -> ; 1 1 e. NN0 ) |
| 113 |
112
|
nn0cnd |
|- ( ( ph /\ X = 2 ) -> ; 1 1 e. CC ) |
| 114 |
106 113
|
addcomd |
|- ( ( ph /\ X = 2 ) -> ( 1 + ; 1 1 ) = ( ; 1 1 + 1 ) ) |
| 115 |
|
eqid |
|- ; 1 1 = ; 1 1 |
| 116 |
100 100 57 115
|
decsuc |
|- ( ; 1 1 + 1 ) = ; 1 2 |
| 117 |
114 116
|
eqtr2di |
|- ( ( ph /\ X = 2 ) -> ; 1 2 = ( 1 + ; 1 1 ) ) |
| 118 |
106 113 117
|
mvrladdd |
|- ( ( ph /\ X = 2 ) -> ( ; 1 2 - 1 ) = ; 1 1 ) |
| 119 |
118
|
negeqd |
|- ( ( ph /\ X = 2 ) -> -u ( ; 1 2 - 1 ) = -u ; 1 1 ) |
| 120 |
109 110 119
|
3eqtr2d |
|- ( ( ph /\ X = 2 ) -> ( -u ; 1 2 + 1 ) = -u ; 1 1 ) |
| 121 |
120
|
oveq2d |
|- ( ( ph /\ X = 2 ) -> ( 8 + ( -u ; 1 2 + 1 ) ) = ( 8 + -u ; 1 1 ) ) |
| 122 |
|
8nn0 |
|- 8 e. NN0 |
| 123 |
122
|
a1i |
|- ( ( ph /\ X = 2 ) -> 8 e. NN0 ) |
| 124 |
123
|
nn0cnd |
|- ( ( ph /\ X = 2 ) -> 8 e. CC ) |
| 125 |
124 113
|
negsubd |
|- ( ( ph /\ X = 2 ) -> ( 8 + -u ; 1 1 ) = ( 8 - ; 1 1 ) ) |
| 126 |
113 124
|
negsubdi2d |
|- ( ( ph /\ X = 2 ) -> -u ( ; 1 1 - 8 ) = ( 8 - ; 1 1 ) ) |
| 127 |
|
8p3e11 |
|- ( 8 + 3 ) = ; 1 1 |
| 128 |
127
|
a1i |
|- ( ( ph /\ X = 2 ) -> ( 8 + 3 ) = ; 1 1 ) |
| 129 |
128
|
eqcomd |
|- ( ( ph /\ X = 2 ) -> ; 1 1 = ( 8 + 3 ) ) |
| 130 |
124 90 129
|
mvrladdd |
|- ( ( ph /\ X = 2 ) -> ( ; 1 1 - 8 ) = 3 ) |
| 131 |
130
|
negeqd |
|- ( ( ph /\ X = 2 ) -> -u ( ; 1 1 - 8 ) = -u 3 ) |
| 132 |
125 126 131
|
3eqtr2d |
|- ( ( ph /\ X = 2 ) -> ( 8 + -u ; 1 1 ) = -u 3 ) |
| 133 |
99 121 132
|
3eqtrd |
|- ( ( ph /\ X = 2 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) = -u 3 ) |
| 134 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 135 |
15
|
nn0red |
|- ( ph -> 3 e. RR ) |
| 136 |
|
neg0 |
|- -u 0 = 0 |
| 137 |
136
|
a1i |
|- ( ph -> -u 0 = 0 ) |
| 138 |
|
3pos |
|- 0 < 3 |
| 139 |
137 138
|
eqbrtrdi |
|- ( ph -> -u 0 < 3 ) |
| 140 |
134 135 139
|
ltnegcon1d |
|- ( ph -> -u 3 < 0 ) |
| 141 |
140
|
adantr |
|- ( ( ph /\ X = 2 ) -> -u 3 < 0 ) |
| 142 |
141
|
lt0ne0d |
|- ( ( ph /\ X = 2 ) -> -u 3 =/= 0 ) |
| 143 |
133 142
|
eqnetrd |
|- ( ( ph /\ X = 2 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 144 |
143
|
ad4ant14 |
|- ( ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) /\ X = 2 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 145 |
1
|
ad2antrr |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> X e. ZZ ) |
| 146 |
|
0zd |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> 0 e. ZZ ) |
| 147 |
37
|
a1i |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> 3 e. ZZ ) |
| 148 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 149 |
|
simplr |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> -u 1 < X ) |
| 150 |
148 149
|
eqbrtrrid |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> ( 0 - 1 ) < X ) |
| 151 |
|
zlem1lt |
|- ( ( 0 e. ZZ /\ X e. ZZ ) -> ( 0 <_ X <-> ( 0 - 1 ) < X ) ) |
| 152 |
151
|
biimpar |
|- ( ( ( 0 e. ZZ /\ X e. ZZ ) /\ ( 0 - 1 ) < X ) -> 0 <_ X ) |
| 153 |
146 145 150 152
|
syl21anc |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> 0 <_ X ) |
| 154 |
|
simpr |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> X < 3 ) |
| 155 |
|
elfzo |
|- ( ( X e. ZZ /\ 0 e. ZZ /\ 3 e. ZZ ) -> ( X e. ( 0 ..^ 3 ) <-> ( 0 <_ X /\ X < 3 ) ) ) |
| 156 |
155
|
biimpar |
|- ( ( ( X e. ZZ /\ 0 e. ZZ /\ 3 e. ZZ ) /\ ( 0 <_ X /\ X < 3 ) ) -> X e. ( 0 ..^ 3 ) ) |
| 157 |
145 146 147 153 154 156
|
syl32anc |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> X e. ( 0 ..^ 3 ) ) |
| 158 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 159 |
157 158
|
eleqtrdi |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> X e. { 0 , 1 , 2 } ) |
| 160 |
|
eltpg |
|- ( X e. ZZ -> ( X e. { 0 , 1 , 2 } <-> ( X = 0 \/ X = 1 \/ X = 2 ) ) ) |
| 161 |
160
|
biimpa |
|- ( ( X e. ZZ /\ X e. { 0 , 1 , 2 } ) -> ( X = 0 \/ X = 1 \/ X = 2 ) ) |
| 162 |
145 159 161
|
syl2anc |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> ( X = 0 \/ X = 1 \/ X = 2 ) ) |
| 163 |
34 74 144 162
|
mpjao3dan |
|- ( ( ( ph /\ -u 1 < X ) /\ X < 3 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 164 |
1 15
|
zexpcld |
|- ( ph -> ( X ^ 3 ) e. ZZ ) |
| 165 |
164
|
zred |
|- ( ph -> ( X ^ 3 ) e. RR ) |
| 166 |
135
|
renegcld |
|- ( ph -> -u 3 e. RR ) |
| 167 |
166 80
|
remulcld |
|- ( ph -> ( -u 3 x. ( X ^ 2 ) ) e. RR ) |
| 168 |
165 167
|
readdcld |
|- ( ph -> ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) e. RR ) |
| 169 |
168
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) e. RR ) |
| 170 |
|
1red |
|- ( ( ph /\ 3 <_ X ) -> 1 e. RR ) |
| 171 |
80
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( X ^ 2 ) e. RR ) |
| 172 |
79 135
|
resubcld |
|- ( ph -> ( X - 3 ) e. RR ) |
| 173 |
172
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( X - 3 ) e. RR ) |
| 174 |
79
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> X e. RR ) |
| 175 |
174
|
sqge0d |
|- ( ( ph /\ 3 <_ X ) -> 0 <_ ( X ^ 2 ) ) |
| 176 |
135
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> 3 e. RR ) |
| 177 |
|
0red |
|- ( ( ph /\ 3 <_ X ) -> 0 e. RR ) |
| 178 |
|
simpr |
|- ( ( ph /\ 3 <_ X ) -> 3 <_ X ) |
| 179 |
79
|
recnd |
|- ( ph -> X e. CC ) |
| 180 |
179
|
subid1d |
|- ( ph -> ( X - 0 ) = X ) |
| 181 |
180
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( X - 0 ) = X ) |
| 182 |
178 181
|
breqtrrd |
|- ( ( ph /\ 3 <_ X ) -> 3 <_ ( X - 0 ) ) |
| 183 |
176 174 177 182
|
lesubd |
|- ( ( ph /\ 3 <_ X ) -> 0 <_ ( X - 3 ) ) |
| 184 |
171 173 175 183
|
mulge0d |
|- ( ( ph /\ 3 <_ X ) -> 0 <_ ( ( X ^ 2 ) x. ( X - 3 ) ) ) |
| 185 |
81 179 16
|
subdid |
|- ( ph -> ( ( X ^ 2 ) x. ( X - 3 ) ) = ( ( ( X ^ 2 ) x. X ) - ( ( X ^ 2 ) x. 3 ) ) ) |
| 186 |
81 179
|
mulcld |
|- ( ph -> ( ( X ^ 2 ) x. X ) e. CC ) |
| 187 |
81 16
|
mulcld |
|- ( ph -> ( ( X ^ 2 ) x. 3 ) e. CC ) |
| 188 |
186 187
|
negsubd |
|- ( ph -> ( ( ( X ^ 2 ) x. X ) + -u ( ( X ^ 2 ) x. 3 ) ) = ( ( ( X ^ 2 ) x. X ) - ( ( X ^ 2 ) x. 3 ) ) ) |
| 189 |
100
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 190 |
101
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 191 |
179 189 190
|
expaddd |
|- ( ph -> ( X ^ ( 2 + 1 ) ) = ( ( X ^ 2 ) x. ( X ^ 1 ) ) ) |
| 192 |
63
|
a1i |
|- ( ph -> ( 2 + 1 ) = 3 ) |
| 193 |
192
|
oveq2d |
|- ( ph -> ( X ^ ( 2 + 1 ) ) = ( X ^ 3 ) ) |
| 194 |
179
|
exp1d |
|- ( ph -> ( X ^ 1 ) = X ) |
| 195 |
194
|
oveq2d |
|- ( ph -> ( ( X ^ 2 ) x. ( X ^ 1 ) ) = ( ( X ^ 2 ) x. X ) ) |
| 196 |
191 193 195
|
3eqtr3rd |
|- ( ph -> ( ( X ^ 2 ) x. X ) = ( X ^ 3 ) ) |
| 197 |
81 16
|
mulcomd |
|- ( ph -> ( ( X ^ 2 ) x. 3 ) = ( 3 x. ( X ^ 2 ) ) ) |
| 198 |
197
|
negeqd |
|- ( ph -> -u ( ( X ^ 2 ) x. 3 ) = -u ( 3 x. ( X ^ 2 ) ) ) |
| 199 |
198 82
|
eqtr4d |
|- ( ph -> -u ( ( X ^ 2 ) x. 3 ) = ( -u 3 x. ( X ^ 2 ) ) ) |
| 200 |
196 199
|
oveq12d |
|- ( ph -> ( ( ( X ^ 2 ) x. X ) + -u ( ( X ^ 2 ) x. 3 ) ) = ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) ) |
| 201 |
185 188 200
|
3eqtr2d |
|- ( ph -> ( ( X ^ 2 ) x. ( X - 3 ) ) = ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) ) |
| 202 |
201
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( ( X ^ 2 ) x. ( X - 3 ) ) = ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) ) |
| 203 |
184 202
|
breqtrd |
|- ( ( ph /\ 3 <_ X ) -> 0 <_ ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) ) |
| 204 |
|
0lt1 |
|- 0 < 1 |
| 205 |
204
|
a1i |
|- ( ( ph /\ 3 <_ X ) -> 0 < 1 ) |
| 206 |
169 170 203 205
|
addgegt0d |
|- ( ( ph /\ 3 <_ X ) -> 0 < ( ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) + 1 ) ) |
| 207 |
165
|
recnd |
|- ( ph -> ( X ^ 3 ) e. CC ) |
| 208 |
207
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( X ^ 3 ) e. CC ) |
| 209 |
167
|
recnd |
|- ( ph -> ( -u 3 x. ( X ^ 2 ) ) e. CC ) |
| 210 |
209
|
adantr |
|- ( ( ph /\ 3 <_ X ) -> ( -u 3 x. ( X ^ 2 ) ) e. CC ) |
| 211 |
|
1cnd |
|- ( ( ph /\ 3 <_ X ) -> 1 e. CC ) |
| 212 |
208 210 211
|
addassd |
|- ( ( ph /\ 3 <_ X ) -> ( ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) + 1 ) = ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) ) |
| 213 |
206 212
|
breqtrd |
|- ( ( ph /\ 3 <_ X ) -> 0 < ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) ) |
| 214 |
213
|
gt0ne0d |
|- ( ( ph /\ 3 <_ X ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 215 |
214
|
adantlr |
|- ( ( ( ph /\ -u 1 < X ) /\ 3 <_ X ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 216 |
79
|
adantr |
|- ( ( ph /\ -u 1 < X ) -> X e. RR ) |
| 217 |
135
|
adantr |
|- ( ( ph /\ -u 1 < X ) -> 3 e. RR ) |
| 218 |
163 215 216 217
|
ltlecasei |
|- ( ( ph /\ -u 1 < X ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 219 |
165
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 3 ) e. RR ) |
| 220 |
167
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 3 x. ( X ^ 2 ) ) e. RR ) |
| 221 |
|
1red |
|- ( ( ph /\ X <_ -u 1 ) -> 1 e. RR ) |
| 222 |
220 221
|
readdcld |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) e. RR ) |
| 223 |
219 222
|
readdcld |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) e. RR ) |
| 224 |
166
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> -u 3 e. RR ) |
| 225 |
|
0red |
|- ( ( ph /\ X <_ -u 1 ) -> 0 e. RR ) |
| 226 |
219 220
|
readdcld |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) e. RR ) |
| 227 |
|
4re |
|- 4 e. RR |
| 228 |
227
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> 4 e. RR ) |
| 229 |
228
|
renegcld |
|- ( ( ph /\ X <_ -u 1 ) -> -u 4 e. RR ) |
| 230 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 231 |
230
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
| 232 |
231
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> -u 1 e. RR ) |
| 233 |
79
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> X e. RR ) |
| 234 |
4
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> 3 e. NN ) |
| 235 |
|
n2dvds3 |
|- -. 2 || 3 |
| 236 |
235
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> -. 2 || 3 ) |
| 237 |
|
simpr |
|- ( ( ph /\ X <_ -u 1 ) -> X <_ -u 1 ) |
| 238 |
233 232 234 236 237
|
oexpled |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 3 ) <_ ( -u 1 ^ 3 ) ) |
| 239 |
|
m1expo |
|- ( ( 3 e. ZZ /\ -. 2 || 3 ) -> ( -u 1 ^ 3 ) = -u 1 ) |
| 240 |
37 236 239
|
sylancr |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 1 ^ 3 ) = -u 1 ) |
| 241 |
238 240
|
breqtrd |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 3 ) <_ -u 1 ) |
| 242 |
234
|
nncnd |
|- ( ( ph /\ X <_ -u 1 ) -> 3 e. CC ) |
| 243 |
81
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 2 ) e. CC ) |
| 244 |
242 243
|
mulneg1d |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 3 x. ( X ^ 2 ) ) = -u ( 3 x. ( X ^ 2 ) ) ) |
| 245 |
135
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> 3 e. RR ) |
| 246 |
135 80
|
remulcld |
|- ( ph -> ( 3 x. ( X ^ 2 ) ) e. RR ) |
| 247 |
246
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( 3 x. ( X ^ 2 ) ) e. RR ) |
| 248 |
80
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 2 ) e. RR ) |
| 249 |
14
|
nn0ge0i |
|- 0 <_ 3 |
| 250 |
249
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> 0 <_ 3 ) |
| 251 |
233 221 237
|
lenegcon2d |
|- ( ( ph /\ X <_ -u 1 ) -> 1 <_ -u X ) |
| 252 |
233
|
renegcld |
|- ( ( ph /\ X <_ -u 1 ) -> -u X e. RR ) |
| 253 |
|
0le1 |
|- 0 <_ 1 |
| 254 |
253
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> 0 <_ 1 ) |
| 255 |
|
neg1rr |
|- -u 1 e. RR |
| 256 |
|
0re |
|- 0 e. RR |
| 257 |
|
neg1lt0 |
|- -u 1 < 0 |
| 258 |
255 256 257
|
ltleii |
|- -u 1 <_ 0 |
| 259 |
258
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> -u 1 <_ 0 ) |
| 260 |
233 232 225 237 259
|
letrd |
|- ( ( ph /\ X <_ -u 1 ) -> X <_ 0 ) |
| 261 |
|
leneg |
|- ( ( X e. RR /\ 0 e. RR ) -> ( X <_ 0 <-> -u 0 <_ -u X ) ) |
| 262 |
261
|
biimpa |
|- ( ( ( X e. RR /\ 0 e. RR ) /\ X <_ 0 ) -> -u 0 <_ -u X ) |
| 263 |
233 225 260 262
|
syl21anc |
|- ( ( ph /\ X <_ -u 1 ) -> -u 0 <_ -u X ) |
| 264 |
136 263
|
eqbrtrrid |
|- ( ( ph /\ X <_ -u 1 ) -> 0 <_ -u X ) |
| 265 |
221 252 254 264
|
le2sqd |
|- ( ( ph /\ X <_ -u 1 ) -> ( 1 <_ -u X <-> ( 1 ^ 2 ) <_ ( -u X ^ 2 ) ) ) |
| 266 |
251 265
|
mpbid |
|- ( ( ph /\ X <_ -u 1 ) -> ( 1 ^ 2 ) <_ ( -u X ^ 2 ) ) |
| 267 |
233
|
recnd |
|- ( ( ph /\ X <_ -u 1 ) -> X e. CC ) |
| 268 |
267
|
sqnegd |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u X ^ 2 ) = ( X ^ 2 ) ) |
| 269 |
266 268
|
breqtrd |
|- ( ( ph /\ X <_ -u 1 ) -> ( 1 ^ 2 ) <_ ( X ^ 2 ) ) |
| 270 |
43 269
|
eqbrtrrid |
|- ( ( ph /\ X <_ -u 1 ) -> 1 <_ ( X ^ 2 ) ) |
| 271 |
245 248 250 270
|
lemulge11d |
|- ( ( ph /\ X <_ -u 1 ) -> 3 <_ ( 3 x. ( X ^ 2 ) ) ) |
| 272 |
|
leneg |
|- ( ( 3 e. RR /\ ( 3 x. ( X ^ 2 ) ) e. RR ) -> ( 3 <_ ( 3 x. ( X ^ 2 ) ) <-> -u ( 3 x. ( X ^ 2 ) ) <_ -u 3 ) ) |
| 273 |
272
|
biimpa |
|- ( ( ( 3 e. RR /\ ( 3 x. ( X ^ 2 ) ) e. RR ) /\ 3 <_ ( 3 x. ( X ^ 2 ) ) ) -> -u ( 3 x. ( X ^ 2 ) ) <_ -u 3 ) |
| 274 |
245 247 271 273
|
syl21anc |
|- ( ( ph /\ X <_ -u 1 ) -> -u ( 3 x. ( X ^ 2 ) ) <_ -u 3 ) |
| 275 |
244 274
|
eqbrtrd |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 3 x. ( X ^ 2 ) ) <_ -u 3 ) |
| 276 |
219 220 232 224 241 275
|
le2addd |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) <_ ( -u 1 + -u 3 ) ) |
| 277 |
|
1cnd |
|- ( ( ph /\ X <_ -u 1 ) -> 1 e. CC ) |
| 278 |
277 242
|
negdid |
|- ( ( ph /\ X <_ -u 1 ) -> -u ( 1 + 3 ) = ( -u 1 + -u 3 ) ) |
| 279 |
277 242
|
addcomd |
|- ( ( ph /\ X <_ -u 1 ) -> ( 1 + 3 ) = ( 3 + 1 ) ) |
| 280 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 281 |
279 280
|
eqtrdi |
|- ( ( ph /\ X <_ -u 1 ) -> ( 1 + 3 ) = 4 ) |
| 282 |
281
|
negeqd |
|- ( ( ph /\ X <_ -u 1 ) -> -u ( 1 + 3 ) = -u 4 ) |
| 283 |
278 282
|
eqtr3d |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 1 + -u 3 ) = -u 4 ) |
| 284 |
276 283
|
breqtrd |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) <_ -u 4 ) |
| 285 |
226 229 221 284
|
leadd1dd |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) + 1 ) <_ ( -u 4 + 1 ) ) |
| 286 |
207
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( X ^ 3 ) e. CC ) |
| 287 |
209
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 3 x. ( X ^ 2 ) ) e. CC ) |
| 288 |
286 287 277
|
addassd |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( ( X ^ 3 ) + ( -u 3 x. ( X ^ 2 ) ) ) + 1 ) = ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) ) |
| 289 |
|
ax-1cn |
|- 1 e. CC |
| 290 |
91 289
|
negsubdii |
|- -u ( 4 - 1 ) = ( -u 4 + 1 ) |
| 291 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
| 292 |
291
|
negeqi |
|- -u ( 4 - 1 ) = -u 3 |
| 293 |
290 292
|
eqtr3i |
|- ( -u 4 + 1 ) = -u 3 |
| 294 |
293
|
a1i |
|- ( ( ph /\ X <_ -u 1 ) -> ( -u 4 + 1 ) = -u 3 ) |
| 295 |
285 288 294
|
3brtr3d |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) <_ -u 3 ) |
| 296 |
140
|
adantr |
|- ( ( ph /\ X <_ -u 1 ) -> -u 3 < 0 ) |
| 297 |
223 224 225 295 296
|
lelttrd |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) < 0 ) |
| 298 |
297
|
lt0ne0d |
|- ( ( ph /\ X <_ -u 1 ) -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |
| 299 |
218 298 231 79
|
ltlecasei |
|- ( ph -> ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) =/= 0 ) |