Metamath Proof Explorer


Theorem cos9thpiminplylem1

Description: The polynomial ( ( X ^ 3 ) + ( ( -u 3 x. ( X ^ 2 ) ) + 1 ) ) has no integer roots. (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypothesis cos9thpiminplylem1.1 φ X
Assertion cos9thpiminplylem1 φ X 3 + -3 X 2 + 1 0

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem1.1 φ X
2 simpr φ X = 0 X = 0
3 2 oveq1d φ X = 0 X 3 = 0 3
4 3nn 3
5 4 a1i φ X = 0 3
6 5 0expd φ X = 0 0 3 = 0
7 3 6 eqtrd φ X = 0 X 3 = 0
8 2 oveq1d φ X = 0 X 2 = 0 2
9 8 oveq2d φ X = 0 -3 X 2 = -3 0 2
10 2nn 2
11 10 a1i φ X = 0 2
12 11 0expd φ X = 0 0 2 = 0
13 12 oveq2d φ X = 0 -3 0 2 = -3 0
14 3nn0 3 0
15 14 a1i φ 3 0
16 15 nn0cnd φ 3
17 16 adantr φ X = 0 3
18 17 negcld φ X = 0 3
19 18 mul01d φ X = 0 -3 0 = 0
20 9 13 19 3eqtrd φ X = 0 -3 X 2 = 0
21 20 oveq1d φ X = 0 -3 X 2 + 1 = 0 + 1
22 7 21 oveq12d φ X = 0 X 3 + -3 X 2 + 1 = 0 + 0 + 1
23 0cnd φ X = 0 0
24 1cnd φ X = 0 1
25 23 24 addcld φ X = 0 0 + 1
26 25 addlidd φ X = 0 0 + 0 + 1 = 0 + 1
27 1cnd φ 1
28 27 addlidd φ 0 + 1 = 1
29 28 adantr φ X = 0 0 + 1 = 1
30 22 26 29 3eqtrd φ X = 0 X 3 + -3 X 2 + 1 = 1
31 ax-1ne0 1 0
32 31 a1i φ X = 0 1 0
33 30 32 eqnetrd φ X = 0 X 3 + -3 X 2 + 1 0
34 33 ad4ant14 φ 1 < X X < 3 X = 0 X 3 + -3 X 2 + 1 0
35 simpr φ X = 1 X = 1
36 35 oveq1d φ X = 1 X 3 = 1 3
37 3z 3
38 1exp 3 1 3 = 1
39 37 38 mp1i φ X = 1 1 3 = 1
40 36 39 eqtrd φ X = 1 X 3 = 1
41 35 oveq1d φ X = 1 X 2 = 1 2
42 41 oveq2d φ X = 1 -3 X 2 = -3 1 2
43 sq1 1 2 = 1
44 43 a1i φ X = 1 1 2 = 1
45 44 oveq2d φ X = 1 -3 1 2 = -3 1
46 16 adantr φ X = 1 3
47 46 negcld φ X = 1 3
48 47 mulridd φ X = 1 -3 1 = 3
49 42 45 48 3eqtrd φ X = 1 -3 X 2 = 3
50 49 oveq1d φ X = 1 -3 X 2 + 1 = - 3 + 1
51 40 50 oveq12d φ X = 1 X 3 + -3 X 2 + 1 = 1 + -3 + 1
52 1cnd φ X = 1 1
53 47 52 addcomd φ X = 1 - 3 + 1 = 1 + -3
54 52 46 negsubd φ X = 1 1 + -3 = 1 3
55 53 54 eqtrd φ X = 1 - 3 + 1 = 1 3
56 55 oveq2d φ X = 1 1 + -3 + 1 = 1 + 1 - 3
57 1p1e2 1 + 1 = 2
58 57 a1i φ X = 1 1 + 1 = 2
59 58 oveq1d φ X = 1 1 + 1 - 3 = 2 3
60 52 52 46 addsubassd φ X = 1 1 + 1 - 3 = 1 + 1 - 3
61 2cnd φ X = 1 2
62 46 61 negsubdi2d φ X = 1 3 2 = 2 3
63 2p1e3 2 + 1 = 3
64 63 a1i φ X = 1 2 + 1 = 3
65 64 eqcomd φ X = 1 3 = 2 + 1
66 61 52 65 mvrladdd φ X = 1 3 2 = 1
67 66 negeqd φ X = 1 3 2 = 1
68 62 67 eqtr3d φ X = 1 2 3 = 1
69 59 60 68 3eqtr3d φ X = 1 1 + 1 - 3 = 1
70 51 56 69 3eqtrd φ X = 1 X 3 + -3 X 2 + 1 = 1
71 neg1ne0 1 0
72 71 a1i φ X = 1 1 0
73 70 72 eqnetrd φ X = 1 X 3 + -3 X 2 + 1 0
74 73 ad4ant14 φ 1 < X X < 3 X = 1 X 3 + -3 X 2 + 1 0
75 oveq1 X = 2 X 3 = 2 3
76 75 adantl φ X = 2 X 3 = 2 3
77 cu2 2 3 = 8
78 76 77 eqtrdi φ X = 2 X 3 = 8
79 1 zred φ X
80 79 resqcld φ X 2
81 80 recnd φ X 2
82 16 81 mulneg1d φ -3 X 2 = 3 X 2
83 82 adantr φ X = 2 -3 X 2 = 3 X 2
84 oveq1 X = 2 X 2 = 2 2
85 84 adantl φ X = 2 X 2 = 2 2
86 sq2 2 2 = 4
87 85 86 eqtrdi φ X = 2 X 2 = 4
88 87 oveq2d φ X = 2 3 X 2 = 3 4
89 88 negeqd φ X = 2 3 X 2 = 3 4
90 16 adantr φ X = 2 3
91 4cn 4
92 91 a1i φ X = 2 4
93 90 92 mulcomd φ X = 2 3 4 = 4 3
94 4t3e12 4 3 = 12
95 93 94 eqtrdi φ X = 2 3 4 = 12
96 95 negeqd φ X = 2 3 4 = 12
97 83 89 96 3eqtrd φ X = 2 -3 X 2 = 12
98 97 oveq1d φ X = 2 -3 X 2 + 1 = - 12 + 1
99 78 98 oveq12d φ X = 2 X 3 + -3 X 2 + 1 = 8 + -12 + 1
100 1nn0 1 0
101 2nn0 2 0
102 100 101 deccl 12 0
103 102 a1i φ X = 2 12 0
104 103 nn0cnd φ X = 2 12
105 104 negcld φ X = 2 12
106 1cnd φ X = 2 1
107 105 106 addcomd φ X = 2 - 12 + 1 = 1 + -12
108 106 104 negsubd φ X = 2 1 + -12 = 1 12
109 107 108 eqtrd φ X = 2 - 12 + 1 = 1 12
110 104 106 negsubdi2d φ X = 2 12 1 = 1 12
111 100 100 deccl 11 0
112 111 a1i φ X = 2 11 0
113 112 nn0cnd φ X = 2 11
114 106 113 addcomd φ X = 2 1 + 11 = 11 + 1
115 eqid 11 = 11
116 100 100 57 115 decsuc 11 + 1 = 12
117 114 116 eqtr2di φ X = 2 12 = 1 + 11
118 106 113 117 mvrladdd φ X = 2 12 1 = 11
119 118 negeqd φ X = 2 12 1 = 11
120 109 110 119 3eqtr2d φ X = 2 - 12 + 1 = 11
121 120 oveq2d φ X = 2 8 + -12 + 1 = 8 + -11
122 8nn0 8 0
123 122 a1i φ X = 2 8 0
124 123 nn0cnd φ X = 2 8
125 124 113 negsubd φ X = 2 8 + -11 = 8 11
126 113 124 negsubdi2d φ X = 2 11 8 = 8 11
127 8p3e11 8 + 3 = 11
128 127 a1i φ X = 2 8 + 3 = 11
129 128 eqcomd φ X = 2 11 = 8 + 3
130 124 90 129 mvrladdd φ X = 2 11 8 = 3
131 130 negeqd φ X = 2 11 8 = 3
132 125 126 131 3eqtr2d φ X = 2 8 + -11 = 3
133 99 121 132 3eqtrd φ X = 2 X 3 + -3 X 2 + 1 = 3
134 0red φ 0
135 15 nn0red φ 3
136 neg0 0 = 0
137 136 a1i φ 0 = 0
138 3pos 0 < 3
139 137 138 eqbrtrdi φ 0 < 3
140 134 135 139 ltnegcon1d φ 3 < 0
141 140 adantr φ X = 2 3 < 0
142 141 lt0ne0d φ X = 2 3 0
143 133 142 eqnetrd φ X = 2 X 3 + -3 X 2 + 1 0
144 143 ad4ant14 φ 1 < X X < 3 X = 2 X 3 + -3 X 2 + 1 0
145 1 ad2antrr φ 1 < X X < 3 X
146 0zd φ 1 < X X < 3 0
147 37 a1i φ 1 < X X < 3 3
148 df-neg 1 = 0 1
149 simplr φ 1 < X X < 3 1 < X
150 148 149 eqbrtrrid φ 1 < X X < 3 0 1 < X
151 zlem1lt 0 X 0 X 0 1 < X
152 151 biimpar 0 X 0 1 < X 0 X
153 146 145 150 152 syl21anc φ 1 < X X < 3 0 X
154 simpr φ 1 < X X < 3 X < 3
155 elfzo X 0 3 X 0 ..^ 3 0 X X < 3
156 155 biimpar X 0 3 0 X X < 3 X 0 ..^ 3
157 145 146 147 153 154 156 syl32anc φ 1 < X X < 3 X 0 ..^ 3
158 fzo0to3tp 0 ..^ 3 = 0 1 2
159 157 158 eleqtrdi φ 1 < X X < 3 X 0 1 2
160 eltpg X X 0 1 2 X = 0 X = 1 X = 2
161 160 biimpa X X 0 1 2 X = 0 X = 1 X = 2
162 145 159 161 syl2anc φ 1 < X X < 3 X = 0 X = 1 X = 2
163 34 74 144 162 mpjao3dan φ 1 < X X < 3 X 3 + -3 X 2 + 1 0
164 1 15 zexpcld φ X 3
165 164 zred φ X 3
166 135 renegcld φ 3
167 166 80 remulcld φ -3 X 2
168 165 167 readdcld φ X 3 + -3 X 2
169 168 adantr φ 3 X X 3 + -3 X 2
170 1red φ 3 X 1
171 80 adantr φ 3 X X 2
172 79 135 resubcld φ X 3
173 172 adantr φ 3 X X 3
174 79 adantr φ 3 X X
175 174 sqge0d φ 3 X 0 X 2
176 135 adantr φ 3 X 3
177 0red φ 3 X 0
178 simpr φ 3 X 3 X
179 79 recnd φ X
180 179 subid1d φ X 0 = X
181 180 adantr φ 3 X X 0 = X
182 178 181 breqtrrd φ 3 X 3 X 0
183 176 174 177 182 lesubd φ 3 X 0 X 3
184 171 173 175 183 mulge0d φ 3 X 0 X 2 X 3
185 81 179 16 subdid φ X 2 X 3 = X 2 X X 2 3
186 81 179 mulcld φ X 2 X
187 81 16 mulcld φ X 2 3
188 186 187 negsubd φ X 2 X + X 2 3 = X 2 X X 2 3
189 100 a1i φ 1 0
190 101 a1i φ 2 0
191 179 189 190 expaddd φ X 2 + 1 = X 2 X 1
192 63 a1i φ 2 + 1 = 3
193 192 oveq2d φ X 2 + 1 = X 3
194 179 exp1d φ X 1 = X
195 194 oveq2d φ X 2 X 1 = X 2 X
196 191 193 195 3eqtr3rd φ X 2 X = X 3
197 81 16 mulcomd φ X 2 3 = 3 X 2
198 197 negeqd φ X 2 3 = 3 X 2
199 198 82 eqtr4d φ X 2 3 = -3 X 2
200 196 199 oveq12d φ X 2 X + X 2 3 = X 3 + -3 X 2
201 185 188 200 3eqtr2d φ X 2 X 3 = X 3 + -3 X 2
202 201 adantr φ 3 X X 2 X 3 = X 3 + -3 X 2
203 184 202 breqtrd φ 3 X 0 X 3 + -3 X 2
204 0lt1 0 < 1
205 204 a1i φ 3 X 0 < 1
206 169 170 203 205 addgegt0d φ 3 X 0 < X 3 + -3 X 2 + 1
207 165 recnd φ X 3
208 207 adantr φ 3 X X 3
209 167 recnd φ -3 X 2
210 209 adantr φ 3 X -3 X 2
211 1cnd φ 3 X 1
212 208 210 211 addassd φ 3 X X 3 + -3 X 2 + 1 = X 3 + -3 X 2 + 1
213 206 212 breqtrd φ 3 X 0 < X 3 + -3 X 2 + 1
214 213 gt0ne0d φ 3 X X 3 + -3 X 2 + 1 0
215 214 adantlr φ 1 < X 3 X X 3 + -3 X 2 + 1 0
216 79 adantr φ 1 < X X
217 135 adantr φ 1 < X 3
218 163 215 216 217 ltlecasei φ 1 < X X 3 + -3 X 2 + 1 0
219 165 adantr φ X 1 X 3
220 167 adantr φ X 1 -3 X 2
221 1red φ X 1 1
222 220 221 readdcld φ X 1 -3 X 2 + 1
223 219 222 readdcld φ X 1 X 3 + -3 X 2 + 1
224 166 adantr φ X 1 3
225 0red φ X 1 0
226 219 220 readdcld φ X 1 X 3 + -3 X 2
227 4re 4
228 227 a1i φ X 1 4
229 228 renegcld φ X 1 4
230 1red φ 1
231 230 renegcld φ 1
232 231 adantr φ X 1 1
233 79 adantr φ X 1 X
234 4 a1i φ X 1 3
235 n2dvds3 ¬ 2 3
236 235 a1i φ X 1 ¬ 2 3
237 simpr φ X 1 X 1
238 233 232 234 236 237 oexpled φ X 1 X 3 1 3
239 m1expo 3 ¬ 2 3 1 3 = 1
240 37 236 239 sylancr φ X 1 1 3 = 1
241 238 240 breqtrd φ X 1 X 3 1
242 234 nncnd φ X 1 3
243 81 adantr φ X 1 X 2
244 242 243 mulneg1d φ X 1 -3 X 2 = 3 X 2
245 135 adantr φ X 1 3
246 135 80 remulcld φ 3 X 2
247 246 adantr φ X 1 3 X 2
248 80 adantr φ X 1 X 2
249 14 nn0ge0i 0 3
250 249 a1i φ X 1 0 3
251 233 221 237 lenegcon2d φ X 1 1 X
252 233 renegcld φ X 1 X
253 0le1 0 1
254 253 a1i φ X 1 0 1
255 neg1rr 1
256 0re 0
257 neg1lt0 1 < 0
258 255 256 257 ltleii 1 0
259 258 a1i φ X 1 1 0
260 233 232 225 237 259 letrd φ X 1 X 0
261 leneg X 0 X 0 0 X
262 261 biimpa X 0 X 0 0 X
263 233 225 260 262 syl21anc φ X 1 0 X
264 136 263 eqbrtrrid φ X 1 0 X
265 221 252 254 264 le2sqd φ X 1 1 X 1 2 X 2
266 251 265 mpbid φ X 1 1 2 X 2
267 233 recnd φ X 1 X
268 267 sqnegd φ X 1 X 2 = X 2
269 266 268 breqtrd φ X 1 1 2 X 2
270 43 269 eqbrtrrid φ X 1 1 X 2
271 245 248 250 270 lemulge11d φ X 1 3 3 X 2
272 leneg 3 3 X 2 3 3 X 2 3 X 2 3
273 272 biimpa 3 3 X 2 3 3 X 2 3 X 2 3
274 245 247 271 273 syl21anc φ X 1 3 X 2 3
275 244 274 eqbrtrd φ X 1 -3 X 2 3
276 219 220 232 224 241 275 le2addd φ X 1 X 3 + -3 X 2 - 1 + -3
277 1cnd φ X 1 1
278 277 242 negdid φ X 1 1 + 3 = - 1 + -3
279 277 242 addcomd φ X 1 1 + 3 = 3 + 1
280 3p1e4 3 + 1 = 4
281 279 280 eqtrdi φ X 1 1 + 3 = 4
282 281 negeqd φ X 1 1 + 3 = 4
283 278 282 eqtr3d φ X 1 - 1 + -3 = 4
284 276 283 breqtrd φ X 1 X 3 + -3 X 2 4
285 226 229 221 284 leadd1dd φ X 1 X 3 + -3 X 2 + 1 - 4 + 1
286 207 adantr φ X 1 X 3
287 209 adantr φ X 1 -3 X 2
288 286 287 277 addassd φ X 1 X 3 + -3 X 2 + 1 = X 3 + -3 X 2 + 1
289 ax-1cn 1
290 91 289 negsubdii 4 1 = - 4 + 1
291 4m1e3 4 1 = 3
292 291 negeqi 4 1 = 3
293 290 292 eqtr3i - 4 + 1 = 3
294 293 a1i φ X 1 - 4 + 1 = 3
295 285 288 294 3brtr3d φ X 1 X 3 + -3 X 2 + 1 3
296 140 adantr φ X 1 3 < 0
297 223 224 225 295 296 lelttrd φ X 1 X 3 + -3 X 2 + 1 < 0
298 297 lt0ne0d φ X 1 X 3 + -3 X 2 + 1 0
299 218 298 231 79 ltlecasei φ X 3 + -3 X 2 + 1 0