Metamath Proof Explorer


Theorem oexpled

Description: Odd power monomials are monotonic. (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypotheses oexpled.1 φ A
oexpled.2 φ B
oexpled.3 φ N
oexpled.4 φ ¬ 2 N
oexpled.5 φ A B
Assertion oexpled φ A N B N

Proof

Step Hyp Ref Expression
1 oexpled.1 φ A
2 oexpled.2 φ B
3 oexpled.3 φ N
4 oexpled.4 φ ¬ 2 N
5 oexpled.5 φ A B
6 0red φ 0
7 0red φ 0 B 0
8 1 adantr φ 0 B A
9 1 adantr φ 0 A A
10 2 adantr φ 0 A B
11 3 nnnn0d φ N 0
12 11 adantr φ 0 A N 0
13 simpr φ 0 A 0 A
14 5 adantr φ 0 A A B
15 9 10 12 13 14 leexp1ad φ 0 A A N B N
16 15 adantlr φ 0 B 0 A A N B N
17 1 ad2antrr φ 0 B A 0 A
18 11 ad2antrr φ 0 B A 0 N 0
19 17 18 reexpcld φ 0 B A 0 A N
20 0red φ 0 B A 0 0
21 2 ad2antrr φ 0 B A 0 B
22 21 18 reexpcld φ 0 B A 0 B N
23 3 nncnd φ N
24 1cnd φ 1
25 23 24 npcand φ N - 1 + 1 = N
26 25 oveq2d φ A N - 1 + 1 = A N
27 1 recnd φ A
28 nnm1nn0 N N 1 0
29 3 28 syl φ N 1 0
30 27 29 expp1d φ A N - 1 + 1 = A N 1 A
31 26 30 eqtr3d φ A N = A N 1 A
32 31 ad2antrr φ 0 B A 0 A N = A N 1 A
33 1 29 reexpcld φ A N 1
34 33 ad2antrr φ 0 B A 0 A N 1
35 3 nnzd φ N
36 oddm1even N ¬ 2 N 2 N 1
37 36 biimpa N ¬ 2 N 2 N 1
38 35 4 37 syl2anc φ 2 N 1
39 1 29 38 expevenpos φ 0 A N 1
40 39 ad2antrr φ 0 B A 0 0 A N 1
41 simpr φ 0 B A 0 A 0
42 17 20 34 40 41 lemul2ad φ 0 B A 0 A N 1 A A N 1 0
43 34 recnd φ 0 B A 0 A N 1
44 43 mul01d φ 0 B A 0 A N 1 0 = 0
45 42 44 breqtrd φ 0 B A 0 A N 1 A 0
46 32 45 eqbrtrd φ 0 B A 0 A N 0
47 simplr φ 0 B A 0 0 B
48 21 18 47 expge0d φ 0 B A 0 0 B N
49 19 20 22 46 48 letrd φ 0 B A 0 A N B N
50 7 8 16 49 lecasei φ 0 B A N B N
51 1 adantr φ B 0 A
52 11 adantr φ B 0 N 0
53 51 52 reexpcld φ B 0 A N
54 2 adantr φ B 0 B
55 54 52 reexpcld φ B 0 B N
56 2 renegcld φ B
57 56 adantr φ B 0 B
58 1 renegcld φ A
59 58 adantr φ B 0 A
60 2 le0neg1d φ B 0 0 B
61 60 biimpa φ B 0 0 B
62 5 adantr φ B 0 A B
63 leneg A B A B B A
64 63 biimpa A B A B B A
65 51 54 62 64 syl21anc φ B 0 B A
66 57 59 52 61 65 leexp1ad φ B 0 B N A N
67 2 recnd φ B
68 oexpneg B N ¬ 2 N B N = B N
69 67 3 4 68 syl3anc φ B N = B N
70 69 adantr φ B 0 B N = B N
71 oexpneg A N ¬ 2 N A N = A N
72 27 3 4 71 syl3anc φ A N = A N
73 72 adantr φ B 0 A N = A N
74 66 70 73 3brtr3d φ B 0 B N A N
75 leneg A N B N A N B N B N A N
76 75 biimpar A N B N B N A N A N B N
77 53 55 74 76 syl21anc φ B 0 A N B N
78 6 2 50 77 lecasei φ A N B N