| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oexpled.1 |
|
| 2 |
|
oexpled.2 |
|
| 3 |
|
oexpled.3 |
|
| 4 |
|
oexpled.4 |
|
| 5 |
|
oexpled.5 |
|
| 6 |
|
0red |
|
| 7 |
|
0red |
|
| 8 |
1
|
adantr |
|
| 9 |
1
|
adantr |
|
| 10 |
2
|
adantr |
|
| 11 |
3
|
nnnn0d |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
5
|
adantr |
|
| 15 |
9 10 12 13 14
|
leexp1ad |
|
| 16 |
15
|
adantlr |
|
| 17 |
1
|
ad2antrr |
|
| 18 |
11
|
ad2antrr |
|
| 19 |
17 18
|
reexpcld |
|
| 20 |
|
0red |
|
| 21 |
2
|
ad2antrr |
|
| 22 |
21 18
|
reexpcld |
|
| 23 |
3
|
nncnd |
|
| 24 |
|
1cnd |
|
| 25 |
23 24
|
npcand |
|
| 26 |
25
|
oveq2d |
|
| 27 |
1
|
recnd |
|
| 28 |
|
nnm1nn0 |
|
| 29 |
3 28
|
syl |
|
| 30 |
27 29
|
expp1d |
|
| 31 |
26 30
|
eqtr3d |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
1 29
|
reexpcld |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
3
|
nnzd |
|
| 36 |
|
oddm1even |
|
| 37 |
36
|
biimpa |
|
| 38 |
35 4 37
|
syl2anc |
|
| 39 |
1 29 38
|
expevenpos |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
|
simpr |
|
| 42 |
17 20 34 40 41
|
lemul2ad |
|
| 43 |
34
|
recnd |
|
| 44 |
43
|
mul01d |
|
| 45 |
42 44
|
breqtrd |
|
| 46 |
32 45
|
eqbrtrd |
|
| 47 |
|
simplr |
|
| 48 |
21 18 47
|
expge0d |
|
| 49 |
19 20 22 46 48
|
letrd |
|
| 50 |
7 8 16 49
|
lecasei |
|
| 51 |
1
|
adantr |
|
| 52 |
11
|
adantr |
|
| 53 |
51 52
|
reexpcld |
|
| 54 |
2
|
adantr |
|
| 55 |
54 52
|
reexpcld |
|
| 56 |
2
|
renegcld |
|
| 57 |
56
|
adantr |
|
| 58 |
1
|
renegcld |
|
| 59 |
58
|
adantr |
|
| 60 |
2
|
le0neg1d |
|
| 61 |
60
|
biimpa |
|
| 62 |
5
|
adantr |
|
| 63 |
|
leneg |
|
| 64 |
63
|
biimpa |
|
| 65 |
51 54 62 64
|
syl21anc |
|
| 66 |
57 59 52 61 65
|
leexp1ad |
|
| 67 |
2
|
recnd |
|
| 68 |
|
oexpneg |
|
| 69 |
67 3 4 68
|
syl3anc |
|
| 70 |
69
|
adantr |
|
| 71 |
|
oexpneg |
|
| 72 |
27 3 4 71
|
syl3anc |
|
| 73 |
72
|
adantr |
|
| 74 |
66 70 73
|
3brtr3d |
|
| 75 |
|
leneg |
|
| 76 |
75
|
biimpar |
|
| 77 |
53 55 74 76
|
syl21anc |
|
| 78 |
6 2 50 77
|
lecasei |
|