| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oexpled.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
oexpled.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
oexpled.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
oexpled.4 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑁 ) |
| 5 |
|
oexpled.5 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 6 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 7 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → 0 ∈ ℝ ) |
| 8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 11 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → 𝑁 ∈ ℕ0 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ 𝐵 ) |
| 15 |
9 10 12 13 14
|
leexp1ad |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 0 ≤ 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 17 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ∈ ℝ ) |
| 18 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 𝑁 ∈ ℕ0 ) |
| 19 |
17 18
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 20 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 0 ∈ ℝ ) |
| 21 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 𝐵 ∈ ℝ ) |
| 22 |
21 18
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℝ ) |
| 23 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 24 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 25 |
23 24
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 27 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 28 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 30 |
27 29
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 31 |
26 30
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 33 |
1 29
|
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
| 35 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 36 |
|
oddm1even |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → 2 ∥ ( 𝑁 − 1 ) ) |
| 38 |
35 4 37
|
syl2anc |
⊢ ( 𝜑 → 2 ∥ ( 𝑁 − 1 ) ) |
| 39 |
1 29 38
|
expevenpos |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 0 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ 0 ) |
| 42 |
17 20 34 40 41
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 0 ) ) |
| 43 |
34
|
recnd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
| 44 |
43
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 0 ) = 0 ) |
| 45 |
42 44
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ≤ 0 ) |
| 46 |
32 45
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) ≤ 0 ) |
| 47 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 0 ≤ 𝐵 ) |
| 48 |
21 18 47
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → 0 ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 49 |
19 20 22 46 48
|
letrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐵 ) ∧ 𝐴 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 50 |
7 8 16 49
|
lecasei |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 51 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝐴 ∈ ℝ ) |
| 52 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝑁 ∈ ℕ0 ) |
| 53 |
51 52
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 54 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝐵 ∈ ℝ ) |
| 55 |
54 52
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℝ ) |
| 56 |
2
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐵 ∈ ℝ ) |
| 58 |
1
|
renegcld |
⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐴 ∈ ℝ ) |
| 60 |
2
|
le0neg1d |
⊢ ( 𝜑 → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
| 61 |
60
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 0 ≤ - 𝐵 ) |
| 62 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → 𝐴 ≤ 𝐵 ) |
| 63 |
|
leneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐴 ) ) |
| 64 |
63
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → - 𝐵 ≤ - 𝐴 ) |
| 65 |
51 54 62 64
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - 𝐵 ≤ - 𝐴 ) |
| 66 |
57 59 52 61 65
|
leexp1ad |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( - 𝐵 ↑ 𝑁 ) ≤ ( - 𝐴 ↑ 𝑁 ) ) |
| 67 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 68 |
|
oexpneg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( - 𝐵 ↑ 𝑁 ) = - ( 𝐵 ↑ 𝑁 ) ) |
| 69 |
67 3 4 68
|
syl3anc |
⊢ ( 𝜑 → ( - 𝐵 ↑ 𝑁 ) = - ( 𝐵 ↑ 𝑁 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( - 𝐵 ↑ 𝑁 ) = - ( 𝐵 ↑ 𝑁 ) ) |
| 71 |
|
oexpneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| 72 |
27 3 4 71
|
syl3anc |
⊢ ( 𝜑 → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
| 74 |
66 70 73
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → - ( 𝐵 ↑ 𝑁 ) ≤ - ( 𝐴 ↑ 𝑁 ) ) |
| 75 |
|
leneg |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℝ ) → ( ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ↔ - ( 𝐵 ↑ 𝑁 ) ≤ - ( 𝐴 ↑ 𝑁 ) ) ) |
| 76 |
75
|
biimpar |
⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℝ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℝ ) ∧ - ( 𝐵 ↑ 𝑁 ) ≤ - ( 𝐴 ↑ 𝑁 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 77 |
53 55 74 76
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| 78 |
6 2 50 77
|
lecasei |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |