| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expevenpos.mmp.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
expevenpos.mmp.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 3 |
|
expevenpos.mmp.3 |
⊢ ( 𝜑 → 2 ∥ 𝑁 ) |
| 4 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 𝐴 ∈ ℝ ) |
| 5 |
4
|
resqcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 𝑝 ∈ ℕ0 ) |
| 7 |
4
|
sqge0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 8 |
5 6 7
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 0 ≤ ( ( 𝐴 ↑ 2 ) ↑ 𝑝 ) ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → ( 2 · 𝑝 ) = 𝑁 ) |
| 10 |
9
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → ( 𝐴 ↑ ( 2 · 𝑝 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 11 |
4
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 𝐴 ∈ ℂ ) |
| 12 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 13 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 2 ∈ ℕ0 ) |
| 14 |
11 6 13
|
expmuld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → ( 𝐴 ↑ ( 2 · 𝑝 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑝 ) ) |
| 15 |
10 14
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑝 ) ) |
| 16 |
8 15
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℕ0 ) ∧ ( 2 · 𝑝 ) = 𝑁 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 17 |
|
evennn02n |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑝 ∈ ℕ0 ( 2 · 𝑝 ) = 𝑁 ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁 ) → ∃ 𝑝 ∈ ℕ0 ( 2 · 𝑝 ) = 𝑁 ) |
| 19 |
2 3 18
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℕ0 ( 2 · 𝑝 ) = 𝑁 ) |
| 20 |
16 19
|
r19.29a |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |