| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expevenpos.mmp.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
expevenpos.mmp.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
expevenpos.mmp.3 |
|- ( ph -> 2 || N ) |
| 4 |
1
|
ad2antrr |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> A e. RR ) |
| 5 |
4
|
resqcld |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> ( A ^ 2 ) e. RR ) |
| 6 |
|
simplr |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> p e. NN0 ) |
| 7 |
4
|
sqge0d |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> 0 <_ ( A ^ 2 ) ) |
| 8 |
5 6 7
|
expge0d |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> 0 <_ ( ( A ^ 2 ) ^ p ) ) |
| 9 |
|
simpr |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> ( 2 x. p ) = N ) |
| 10 |
9
|
oveq2d |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> ( A ^ ( 2 x. p ) ) = ( A ^ N ) ) |
| 11 |
4
|
recnd |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> A e. CC ) |
| 12 |
|
2nn0 |
|- 2 e. NN0 |
| 13 |
12
|
a1i |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> 2 e. NN0 ) |
| 14 |
11 6 13
|
expmuld |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> ( A ^ ( 2 x. p ) ) = ( ( A ^ 2 ) ^ p ) ) |
| 15 |
10 14
|
eqtr3d |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> ( A ^ N ) = ( ( A ^ 2 ) ^ p ) ) |
| 16 |
8 15
|
breqtrrd |
|- ( ( ( ph /\ p e. NN0 ) /\ ( 2 x. p ) = N ) -> 0 <_ ( A ^ N ) ) |
| 17 |
|
evennn02n |
|- ( N e. NN0 -> ( 2 || N <-> E. p e. NN0 ( 2 x. p ) = N ) ) |
| 18 |
17
|
biimpa |
|- ( ( N e. NN0 /\ 2 || N ) -> E. p e. NN0 ( 2 x. p ) = N ) |
| 19 |
2 3 18
|
syl2anc |
|- ( ph -> E. p e. NN0 ( 2 x. p ) = N ) |
| 20 |
16 19
|
r19.29a |
|- ( ph -> 0 <_ ( A ^ N ) ) |