| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrabscl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
fveq2 |
⊢ ( 𝑋 = 0 → ( √ ‘ 𝑋 ) = ( √ ‘ 0 ) ) |
| 3 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝑋 = 0 → ( √ ‘ 𝑋 ) = 0 ) |
| 5 |
|
0zd |
⊢ ( 𝑋 = 0 → 0 ∈ ℤ ) |
| 6 |
5
|
zconstr |
⊢ ( 𝑋 = 0 → 0 ∈ Constr ) |
| 7 |
4 6
|
eqeltrd |
⊢ ( 𝑋 = 0 → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 9 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℂ ) |
| 11 |
10
|
negnegd |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - - 𝑋 = 𝑋 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ - - 𝑋 ) = ( √ ‘ 𝑋 ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - 𝑋 ∈ ℝ+ ) |
| 14 |
13
|
rpred |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - 𝑋 ∈ ℝ ) |
| 15 |
13
|
rpge0d |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → 0 ≤ - 𝑋 ) |
| 16 |
14 15
|
sqrtnegd |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ - - 𝑋 ) = ( i · ( √ ‘ - 𝑋 ) ) ) |
| 17 |
12 16
|
eqtr3d |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ 𝑋 ) = ( i · ( √ ‘ - 𝑋 ) ) ) |
| 18 |
|
iconstr |
⊢ i ∈ Constr |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → i ∈ Constr ) |
| 20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ Constr ) |
| 21 |
20
|
constrnegcl |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → - 𝑋 ∈ Constr ) |
| 22 |
21 14 15
|
constrresqrtcl |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ - 𝑋 ) ∈ Constr ) |
| 23 |
19 22
|
constrmulcl |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( i · ( √ ‘ - 𝑋 ) ) ∈ Constr ) |
| 24 |
17 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ - 𝑋 ∈ ℝ+ ) → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 26 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℂ ) |
| 27 |
26
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 29 |
28
|
sqrtcld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( √ ‘ ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 30 |
28 26
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( abs ‘ 𝑋 ) + 𝑋 ) ∈ ℂ ) |
| 31 |
30
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ∈ ℂ ) |
| 33 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 𝑋 ∈ ℂ ) |
| 34 |
9
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 36 |
35
|
recnd |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 38 |
|
addeq0 |
⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ↔ ( abs ‘ 𝑋 ) = - 𝑋 ) ) |
| 39 |
38
|
biimpa |
⊢ ( ( ( ( abs ‘ 𝑋 ) ∈ ℂ ∧ 𝑋 ∈ ℂ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( abs ‘ 𝑋 ) = - 𝑋 ) |
| 40 |
36 33 37 39
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( abs ‘ 𝑋 ) = - 𝑋 ) |
| 41 |
40 35
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → - 𝑋 ∈ ℝ ) |
| 42 |
33 41
|
negrebd |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 𝑋 ∈ ℝ ) |
| 43 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 0 ∈ ℝ ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ¬ - 𝑋 ∈ ℝ+ ) |
| 45 |
|
negelrp |
⊢ ( 𝑋 ∈ ℝ → ( - 𝑋 ∈ ℝ+ ↔ 𝑋 < 0 ) ) |
| 46 |
45
|
notbid |
⊢ ( 𝑋 ∈ ℝ → ( ¬ - 𝑋 ∈ ℝ+ ↔ ¬ 𝑋 < 0 ) ) |
| 47 |
46
|
biimpa |
⊢ ( ( 𝑋 ∈ ℝ ∧ ¬ - 𝑋 ∈ ℝ+ ) → ¬ 𝑋 < 0 ) |
| 48 |
42 44 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ¬ 𝑋 < 0 ) |
| 49 |
43 42 48
|
nltled |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 0 ≤ 𝑋 ) |
| 50 |
42 49
|
absidd |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → ( abs ‘ 𝑋 ) = 𝑋 ) |
| 51 |
50 40
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 𝑋 = - 𝑋 ) |
| 52 |
33 51
|
eqnegad |
⊢ ( ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 ) → 𝑋 = 0 ) |
| 53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( ( abs ‘ 𝑋 ) + 𝑋 ) = 0 → 𝑋 = 0 ) ) |
| 54 |
53
|
necon3d |
⊢ ( ( 𝜑 ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( 𝑋 ≠ 0 → ( ( abs ‘ 𝑋 ) + 𝑋 ) ≠ 0 ) ) |
| 55 |
54
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ¬ - 𝑋 ∈ ℝ+ → ( ( abs ‘ 𝑋 ) + 𝑋 ) ≠ 0 ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( abs ‘ 𝑋 ) + 𝑋 ) ≠ 0 ) |
| 57 |
30 56
|
absne0d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ≠ 0 ) |
| 58 |
30 32 57
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ∈ ℂ ) |
| 59 |
29 58
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ∈ ℂ ) |
| 60 |
|
eqid |
⊢ ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) |
| 61 |
60
|
sqreulem |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( ( abs ‘ 𝑋 ) + 𝑋 ) ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ↑ 2 ) = 𝑋 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∉ ℝ+ ) ) |
| 62 |
26 56 61
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ↑ 2 ) = 𝑋 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∉ ℝ+ ) ) |
| 63 |
62
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ↑ 2 ) = 𝑋 ) |
| 64 |
62
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ) |
| 65 |
62
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∉ ℝ+ ) |
| 66 |
|
df-nel |
⊢ ( ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∉ ℝ+ ↔ ¬ ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∈ ℝ+ ) |
| 67 |
65 66
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ¬ ( i · ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ) ∈ ℝ+ ) |
| 68 |
59 26 63 64 67
|
eqsqrtd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) = ( √ ‘ 𝑋 ) ) |
| 69 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → 𝑋 ∈ Constr ) |
| 70 |
69
|
constrabscl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( abs ‘ 𝑋 ) ∈ Constr ) |
| 71 |
26
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 72 |
70 27 71
|
constrresqrtcl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( √ ‘ ( abs ‘ 𝑋 ) ) ∈ Constr ) |
| 73 |
70 69
|
constraddcl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( abs ‘ 𝑋 ) + 𝑋 ) ∈ Constr ) |
| 74 |
73 56
|
constrdircl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ∈ Constr ) |
| 75 |
72 74
|
constrmulcl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( ( √ ‘ ( abs ‘ 𝑋 ) ) · ( ( ( abs ‘ 𝑋 ) + 𝑋 ) / ( abs ‘ ( ( abs ‘ 𝑋 ) + 𝑋 ) ) ) ) ∈ Constr ) |
| 76 |
68 75
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ 0 ) ∧ ¬ - 𝑋 ∈ ℝ+ ) → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 77 |
25 76
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( √ ‘ 𝑋 ) ∈ Constr ) |
| 78 |
8 77
|
pm2.61dane |
⊢ ( 𝜑 → ( √ ‘ 𝑋 ) ∈ Constr ) |