| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrabscl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |
| 2 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 3 |
2
|
zconstr |
⊢ ( 𝜑 → 0 ∈ Constr ) |
| 4 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 5 |
4
|
zconstr |
⊢ ( 𝜑 → 1 ∈ Constr ) |
| 6 |
1
|
constrcn |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 7 |
6
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 9 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 1 − 0 ) = 1 ) |
| 11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 12 |
10 11
|
eqeltrdi |
⊢ ( 𝜑 → ( 1 − 0 ) ∈ ℂ ) |
| 13 |
8 12
|
mulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ ) |
| 14 |
13
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) |
| 15 |
10
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( abs ‘ 𝑋 ) · 1 ) ) |
| 16 |
8
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · 1 ) = ( abs ‘ 𝑋 ) ) |
| 17 |
14 15 16
|
3eqtrrd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) = ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) ) |
| 18 |
6
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 19 |
7 18
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 20 |
8
|
subid1d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) − 0 ) = ( abs ‘ 𝑋 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( abs ‘ 𝑋 ) ) ) |
| 22 |
6
|
subid1d |
⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 24 |
19 21 23
|
3eqtr4d |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 25 |
3 5 3 1 3 7 8 17 24
|
constrlccl |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ Constr ) |