Metamath Proof Explorer


Theorem constrabscl

Description: Constructible numbers are closed under absolute value (modulus). (Contributed by Thierry Arnoux, 6-Nov-2025)

Ref Expression
Hypothesis constrabscl.1 ( 𝜑𝑋 ∈ Constr )
Assertion constrabscl ( 𝜑 → ( abs ‘ 𝑋 ) ∈ Constr )

Proof

Step Hyp Ref Expression
1 constrabscl.1 ( 𝜑𝑋 ∈ Constr )
2 0zd ( 𝜑 → 0 ∈ ℤ )
3 2 zconstr ( 𝜑 → 0 ∈ Constr )
4 1zzd ( 𝜑 → 1 ∈ ℤ )
5 4 zconstr ( 𝜑 → 1 ∈ Constr )
6 1 constrcn ( 𝜑𝑋 ∈ ℂ )
7 6 abscld ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ )
8 7 recnd ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ )
9 1m0e1 ( 1 − 0 ) = 1
10 9 a1i ( 𝜑 → ( 1 − 0 ) = 1 )
11 ax-1cn 1 ∈ ℂ
12 10 11 eqeltrdi ( 𝜑 → ( 1 − 0 ) ∈ ℂ )
13 8 12 mulcld ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ∈ ℂ )
14 13 addlidd ( 𝜑 → ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) = ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) )
15 10 oveq2d ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) = ( ( abs ‘ 𝑋 ) · 1 ) )
16 8 mulridd ( 𝜑 → ( ( abs ‘ 𝑋 ) · 1 ) = ( abs ‘ 𝑋 ) )
17 14 15 16 3eqtrrd ( 𝜑 → ( abs ‘ 𝑋 ) = ( 0 + ( ( abs ‘ 𝑋 ) · ( 1 − 0 ) ) ) )
18 6 absge0d ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) )
19 7 18 absidd ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) )
20 8 subid1d ( 𝜑 → ( ( abs ‘ 𝑋 ) − 0 ) = ( abs ‘ 𝑋 ) )
21 20 fveq2d ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( abs ‘ 𝑋 ) ) )
22 6 subid1d ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 )
23 22 fveq2d ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) )
24 19 21 23 3eqtr4d ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) − 0 ) ) = ( abs ‘ ( 𝑋 − 0 ) ) )
25 3 5 3 1 3 7 8 17 24 constrlccl ( 𝜑 → ( abs ‘ 𝑋 ) ∈ Constr )