| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqrteulem.1 |
|- B = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 2 |
1
|
oveq1i |
|- ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) |
| 3 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 4 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 5 |
|
resqrtcl |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 6 |
3 4 5
|
syl2anc |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 7 |
6
|
recnd |
|- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 8 |
7
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 9 |
3
|
recnd |
|- ( A e. CC -> ( abs ` A ) e. CC ) |
| 10 |
|
addcl |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) |
| 11 |
9 10
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) |
| 12 |
11
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
| 13 |
|
abscl |
|- ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 14 |
11 13
|
syl |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 16 |
15
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 17 |
11
|
abs00ad |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 18 |
17
|
necon3bid |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) |
| 19 |
18
|
biimpar |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
| 20 |
12 16 19
|
divcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
| 21 |
8 20
|
sqmuld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
| 22 |
2 21
|
eqtrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) ) |
| 23 |
3
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. RR ) |
| 24 |
4
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` A ) ) |
| 25 |
|
resqrtth |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
| 26 |
23 24 25
|
syl2anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) ^ 2 ) = ( abs ` A ) ) |
| 27 |
12 16 19
|
sqdivd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) ) |
| 28 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 29 |
|
2cn |
|- 2 e. CC |
| 30 |
|
mulass |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
| 31 |
29 30
|
mp3an1 |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
| 32 |
9 31
|
mpancom |
|- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( 2 x. ( ( abs ` A ) x. A ) ) ) |
| 33 |
|
mulcl |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( abs ` A ) ) e. CC ) |
| 34 |
29 9 33
|
sylancr |
|- ( A e. CC -> ( 2 x. ( abs ` A ) ) e. CC ) |
| 35 |
|
mulcom |
|- ( ( ( 2 x. ( abs ` A ) ) e. CC /\ A e. CC ) -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
| 36 |
34 35
|
mpancom |
|- ( A e. CC -> ( ( 2 x. ( abs ` A ) ) x. A ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
| 37 |
32 36
|
eqtr3d |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. A ) ) = ( A x. ( 2 x. ( abs ` A ) ) ) ) |
| 38 |
28 37
|
oveq12d |
|- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 39 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
| 40 |
|
adddi |
|- ( ( A e. CC /\ ( * ` A ) e. CC /\ ( 2 x. ( abs ` A ) ) e. CC ) -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 41 |
39 34 40
|
mpd3an23 |
|- ( A e. CC -> ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( A x. ( * ` A ) ) + ( A x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 42 |
38 41
|
eqtr4d |
|- ( A e. CC -> ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) = ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
| 43 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
| 44 |
42 43
|
oveq12d |
|- ( A e. CC -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
| 45 |
|
binom2 |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
| 46 |
9 45
|
mpancom |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. A ) ) ) + ( A ^ 2 ) ) ) |
| 47 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 48 |
39 34
|
addcld |
|- ( A e. CC -> ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC ) |
| 49 |
47 48 47
|
adddid |
|- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( A x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( A x. A ) ) ) |
| 50 |
44 46 49
|
3eqtr4d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) ^ 2 ) = ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
| 51 |
9 34
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) e. CC ) |
| 52 |
9 39
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( * ` A ) ) e. CC ) |
| 53 |
51 52
|
addcomd |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 54 |
9 9
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) e. CC ) |
| 55 |
54
|
2timesd |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) ) |
| 56 |
|
mul12 |
|- ( ( 2 e. CC /\ ( abs ` A ) e. CC /\ ( abs ` A ) e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
| 57 |
29 9 9 56
|
mp3an2i |
|- ( A e. CC -> ( 2 x. ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
| 58 |
9
|
sqvald |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 59 |
|
mulcom |
|- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
| 60 |
39 59
|
mpdan |
|- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
| 61 |
28 58 60
|
3eqtr3d |
|- ( A e. CC -> ( ( abs ` A ) x. ( abs ` A ) ) = ( ( * ` A ) x. A ) ) |
| 62 |
61
|
oveq2d |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( abs ` A ) x. ( abs ` A ) ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) ) |
| 63 |
55 57 62
|
3eqtr3rd |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) = ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) |
| 64 |
63
|
oveq1d |
|- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) ) |
| 65 |
9 39 34
|
adddid |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) = ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. ( 2 x. ( abs ` A ) ) ) ) ) |
| 66 |
53 64 65
|
3eqtr4d |
|- ( A e. CC -> ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) = ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) ) |
| 67 |
66
|
oveq1d |
|- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 68 |
|
cjadd |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
| 69 |
9 68
|
mpancom |
|- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( * ` ( abs ` A ) ) + ( * ` A ) ) ) |
| 70 |
3
|
cjred |
|- ( A e. CC -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) |
| 71 |
70
|
oveq1d |
|- ( A e. CC -> ( ( * ` ( abs ` A ) ) + ( * ` A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
| 72 |
69 71
|
eqtrd |
|- ( A e. CC -> ( * ` ( ( abs ` A ) + A ) ) = ( ( abs ` A ) + ( * ` A ) ) ) |
| 73 |
72
|
oveq2d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) ) |
| 74 |
9 47 9 39
|
muladdd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( ( abs ` A ) + ( * ` A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 75 |
73 74
|
eqtrd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 76 |
|
absvalsq |
|- ( ( ( abs ` A ) + A ) e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 77 |
11 76
|
syl |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( abs ` A ) + A ) x. ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 78 |
|
mulcl |
|- ( ( ( * ` A ) e. CC /\ A e. CC ) -> ( ( * ` A ) x. A ) e. CC ) |
| 79 |
39 78
|
mpancom |
|- ( A e. CC -> ( ( * ` A ) x. A ) e. CC ) |
| 80 |
54 79
|
addcld |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) e. CC ) |
| 81 |
|
mulcl |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) x. A ) e. CC ) |
| 82 |
9 81
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) x. A ) e. CC ) |
| 83 |
80 52 82
|
addassd |
|- ( A e. CC -> ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) = ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( ( abs ` A ) x. ( * ` A ) ) + ( ( abs ` A ) x. A ) ) ) ) |
| 84 |
75 77 83
|
3eqtr4d |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( ( ( ( abs ` A ) x. ( abs ` A ) ) + ( ( * ` A ) x. A ) ) + ( ( abs ` A ) x. ( * ` A ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 85 |
9 48 47
|
adddid |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = ( ( ( abs ` A ) x. ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) ) + ( ( abs ` A ) x. A ) ) ) |
| 86 |
67 84 85
|
3eqtr4d |
|- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) |
| 87 |
50 86
|
oveq12d |
|- ( A e. CC -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 88 |
87
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) ^ 2 ) / ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 89 |
27 88
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) = ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 90 |
26 89
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) ^ 2 ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ^ 2 ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
| 91 |
|
addcl |
|- ( ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) e. CC /\ A e. CC ) -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
| 92 |
48 91
|
mpancom |
|- ( A e. CC -> ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) |
| 93 |
9 47 92
|
mul12d |
|- ( A e. CC -> ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 94 |
93
|
oveq1d |
|- ( A e. CC -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 95 |
94
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) |
| 96 |
9
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) e. CC ) |
| 97 |
|
mulcl |
|- ( ( A e. CC /\ ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) e. CC ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 98 |
92 97
|
mpdan |
|- ( A e. CC -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 99 |
98
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 100 |
9 92
|
mulcld |
|- ( A e. CC -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 101 |
100
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) e. CC ) |
| 102 |
|
sqeq0 |
|- ( ( abs ` ( ( abs ` A ) + A ) ) e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
| 103 |
15 102
|
syl |
|- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( abs ` ( ( abs ` A ) + A ) ) = 0 ) ) |
| 104 |
86
|
eqeq1d |
|- ( A e. CC -> ( ( ( abs ` ( ( abs ` A ) + A ) ) ^ 2 ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
| 105 |
103 104 17
|
3bitr3rd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) = 0 ) ) |
| 106 |
105
|
necon3bid |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) ) |
| 107 |
106
|
biimpa |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) =/= 0 ) |
| 108 |
96 99 101 107
|
divassd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) x. ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) ) |
| 109 |
|
simpl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> A e. CC ) |
| 110 |
109 101 107
|
divcan4d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( A x. ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) = A ) |
| 111 |
95 108 110
|
3eqtr3d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) x. ( ( A x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) / ( ( abs ` A ) x. ( ( ( * ` A ) + ( 2 x. ( abs ` A ) ) ) + A ) ) ) ) = A ) |
| 112 |
22 90 111
|
3eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B ^ 2 ) = A ) |
| 113 |
6
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 114 |
11
|
addcjd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) = ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 115 |
|
2re |
|- 2 e. RR |
| 116 |
11
|
recld |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) e. RR ) |
| 117 |
|
remulcl |
|- ( ( 2 e. RR /\ ( Re ` ( ( abs ` A ) + A ) ) e. RR ) -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 118 |
115 116 117
|
sylancr |
|- ( A e. CC -> ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 119 |
114 118
|
eqeltrd |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 120 |
119
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 121 |
14
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 122 |
120 121 19
|
redivcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. RR ) |
| 123 |
113 122
|
remulcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR ) |
| 124 |
|
sqrtge0 |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
| 125 |
3 4 124
|
syl2anc |
|- ( A e. CC -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
| 126 |
125
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( sqrt ` ( abs ` A ) ) ) |
| 127 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 128 |
|
releabs |
|- ( -u A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
| 129 |
127 128
|
syl |
|- ( A e. CC -> ( Re ` -u A ) <_ ( abs ` -u A ) ) |
| 130 |
|
abscl |
|- ( -u A e. CC -> ( abs ` -u A ) e. RR ) |
| 131 |
127 130
|
syl |
|- ( A e. CC -> ( abs ` -u A ) e. RR ) |
| 132 |
127
|
recld |
|- ( A e. CC -> ( Re ` -u A ) e. RR ) |
| 133 |
131 132
|
subge0d |
|- ( A e. CC -> ( 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) <-> ( Re ` -u A ) <_ ( abs ` -u A ) ) ) |
| 134 |
129 133
|
mpbird |
|- ( A e. CC -> 0 <_ ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 135 |
|
readd |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
| 136 |
9 135
|
mpancom |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) ) |
| 137 |
3
|
rered |
|- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` A ) ) |
| 138 |
|
absneg |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
| 139 |
137 138
|
eqtr4d |
|- ( A e. CC -> ( Re ` ( abs ` A ) ) = ( abs ` -u A ) ) |
| 140 |
|
negneg |
|- ( A e. CC -> -u -u A = A ) |
| 141 |
140
|
fveq2d |
|- ( A e. CC -> ( Re ` -u -u A ) = ( Re ` A ) ) |
| 142 |
127
|
renegd |
|- ( A e. CC -> ( Re ` -u -u A ) = -u ( Re ` -u A ) ) |
| 143 |
141 142
|
eqtr3d |
|- ( A e. CC -> ( Re ` A ) = -u ( Re ` -u A ) ) |
| 144 |
139 143
|
oveq12d |
|- ( A e. CC -> ( ( Re ` ( abs ` A ) ) + ( Re ` A ) ) = ( ( abs ` -u A ) + -u ( Re ` -u A ) ) ) |
| 145 |
131
|
recnd |
|- ( A e. CC -> ( abs ` -u A ) e. CC ) |
| 146 |
132
|
recnd |
|- ( A e. CC -> ( Re ` -u A ) e. CC ) |
| 147 |
145 146
|
negsubd |
|- ( A e. CC -> ( ( abs ` -u A ) + -u ( Re ` -u A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 148 |
136 144 147
|
3eqtrd |
|- ( A e. CC -> ( Re ` ( ( abs ` A ) + A ) ) = ( ( abs ` -u A ) - ( Re ` -u A ) ) ) |
| 149 |
134 148
|
breqtrrd |
|- ( A e. CC -> 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) |
| 150 |
|
0le2 |
|- 0 <_ 2 |
| 151 |
|
mulge0 |
|- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 152 |
115 150 151
|
mpanl12 |
|- ( ( ( Re ` ( ( abs ` A ) + A ) ) e. RR /\ 0 <_ ( Re ` ( ( abs ` A ) + A ) ) ) -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 153 |
116 149 152
|
syl2anc |
|- ( A e. CC -> 0 <_ ( 2 x. ( Re ` ( ( abs ` A ) + A ) ) ) ) |
| 154 |
153 114
|
breqtrrd |
|- ( A e. CC -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 155 |
154
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) |
| 156 |
|
absge0 |
|- ( ( ( abs ` A ) + A ) e. CC -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
| 157 |
12 156
|
syl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( abs ` ( ( abs ` A ) + A ) ) ) |
| 158 |
121 157 19
|
ne0gt0d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 < ( abs ` ( ( abs ` A ) + A ) ) ) |
| 159 |
|
divge0 |
|- ( ( ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) e. RR /\ 0 <_ ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) ) /\ ( ( abs ` ( ( abs ` A ) + A ) ) e. RR /\ 0 < ( abs ` ( ( abs ` A ) + A ) ) ) ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 160 |
120 155 121 158 159
|
syl22anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 161 |
113 122 126 160
|
mulge0d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 162 |
|
2pos |
|- 0 < 2 |
| 163 |
|
divge0 |
|- ( ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 164 |
115 162 163
|
mpanr12 |
|- ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. RR /\ 0 <_ ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 165 |
123 161 164
|
syl2anc |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 166 |
8 20
|
mulcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
| 167 |
1 166
|
eqeltrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> B e. CC ) |
| 168 |
|
reval |
|- ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
| 169 |
167 168
|
syl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
| 170 |
1
|
oveq1i |
|- ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 171 |
1
|
fveq2i |
|- ( * ` B ) = ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 172 |
8 20
|
cjmuld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 173 |
171 172
|
eqtrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 174 |
6
|
cjred |
|- ( A e. CC -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
| 175 |
174
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( sqrt ` ( abs ` A ) ) ) = ( sqrt ` ( abs ` A ) ) ) |
| 176 |
12 16 19
|
cjdivd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 177 |
121
|
cjred |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) = ( abs ` ( ( abs ` A ) + A ) ) ) |
| 178 |
177
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( * ` ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 179 |
176 178
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
| 180 |
175 179
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( sqrt ` ( abs ` A ) ) ) x. ( * ` ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 181 |
173 180
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` B ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 182 |
181
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( B + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 183 |
12
|
cjcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( * ` ( ( abs ` A ) + A ) ) e. CC ) |
| 184 |
183 16 19
|
divcld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
| 185 |
8 20 184
|
adddid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) + ( ( sqrt ` ( abs ` A ) ) x. ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 186 |
170 182 185
|
3eqtr4a |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 187 |
12 183 16 19
|
divdird |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) = ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 188 |
187
|
oveq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) + ( ( * ` ( ( abs ` A ) + A ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 189 |
186 188
|
eqtr4d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( B + ( * ` B ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) |
| 190 |
189
|
oveq1d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 191 |
169 190
|
eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( Re ` B ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( ( abs ` A ) + A ) + ( * ` ( ( abs ` A ) + A ) ) ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) / 2 ) ) |
| 192 |
165 191
|
breqtrrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> 0 <_ ( Re ` B ) ) |
| 193 |
|
subneg |
|- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
| 194 |
9 193
|
mpancom |
|- ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
| 195 |
194
|
eqeq1d |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 196 |
9 127
|
subeq0ad |
|- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 197 |
195 196
|
bitr3d |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 198 |
197
|
necon3bid |
|- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 <-> ( abs ` A ) =/= -u A ) ) |
| 199 |
198
|
biimpa |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` A ) =/= -u A ) |
| 200 |
|
resqcl |
|- ( ( _i x. B ) e. RR -> ( ( _i x. B ) ^ 2 ) e. RR ) |
| 201 |
|
ax-icn |
|- _i e. CC |
| 202 |
|
sqmul |
|- ( ( _i e. CC /\ B e. CC ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
| 203 |
201 167 202
|
sylancr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) ) |
| 204 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 205 |
204
|
a1i |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i ^ 2 ) = -u 1 ) |
| 206 |
205 112
|
oveq12d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. A ) ) |
| 207 |
|
mulm1 |
|- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
| 208 |
207
|
adantr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( -u 1 x. A ) = -u A ) |
| 209 |
203 206 208
|
3eqtrd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) ^ 2 ) = -u A ) |
| 210 |
209
|
eleq1d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( _i x. B ) ^ 2 ) e. RR <-> -u A e. RR ) ) |
| 211 |
200 210
|
imbitrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> -u A e. RR ) ) |
| 212 |
|
renegcl |
|- ( -u A e. RR -> -u -u A e. RR ) |
| 213 |
140
|
eleq1d |
|- ( A e. CC -> ( -u -u A e. RR <-> A e. RR ) ) |
| 214 |
212 213
|
imbitrid |
|- ( A e. CC -> ( -u A e. RR -> A e. RR ) ) |
| 215 |
109 211 214
|
sylsyld |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A e. RR ) ) |
| 216 |
|
sqge0 |
|- ( ( _i x. B ) e. RR -> 0 <_ ( ( _i x. B ) ^ 2 ) ) |
| 217 |
209
|
breq2d |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( 0 <_ ( ( _i x. B ) ^ 2 ) <-> 0 <_ -u A ) ) |
| 218 |
216 217
|
imbitrid |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> 0 <_ -u A ) ) |
| 219 |
|
le0neg1 |
|- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 220 |
219
|
biimprcd |
|- ( 0 <_ -u A -> ( A e. RR -> A <_ 0 ) ) |
| 221 |
218 215 220
|
syl6c |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> A <_ 0 ) ) |
| 222 |
215 221
|
jcad |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( A e. RR /\ A <_ 0 ) ) ) |
| 223 |
|
absnid |
|- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
| 224 |
222 223
|
syl6 |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( _i x. B ) e. RR -> ( abs ` A ) = -u A ) ) |
| 225 |
224
|
necon3ad |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) =/= -u A -> -. ( _i x. B ) e. RR ) ) |
| 226 |
199 225
|
mpd |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR ) |
| 227 |
|
rpre |
|- ( ( _i x. B ) e. RR+ -> ( _i x. B ) e. RR ) |
| 228 |
226 227
|
nsyl |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> -. ( _i x. B ) e. RR+ ) |
| 229 |
|
df-nel |
|- ( ( _i x. B ) e/ RR+ <-> -. ( _i x. B ) e. RR+ ) |
| 230 |
228 229
|
sylibr |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( _i x. B ) e/ RR+ ) |
| 231 |
112 192 230
|
3jca |
|- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( B ^ 2 ) = A /\ 0 <_ ( Re ` B ) /\ ( _i x. B ) e/ RR+ ) ) |