Metamath Proof Explorer


Theorem contrd

Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses contrd.1 φ¬ψχ
contrd.2 φ¬ψ¬χ
Assertion contrd φψ

Proof

Step Hyp Ref Expression
1 contrd.1 φ¬ψχ
2 contrd.2 φ¬ψ¬χ
3 1 2 jcad φ¬ψχ¬χ
4 pm2.24 χ¬χψ
5 4 imp χ¬χψ
6 5 imim2i ¬ψχ¬χ¬ψψ
7 6 pm2.18d ¬ψχ¬χψ
8 3 7 syl φψ