Metamath Proof Explorer


Theorem cosnegpi

Description: The cosine of negative _pi is negative 1 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion cosnegpi cosπ=1

Proof

Step Hyp Ref Expression
1 2cn 2
2 picn π
3 1 2 mulcli 2π
4 3 mulm1i -12π=2π
5 4 oveq2i π+-12π=π+2π
6 2 3 negsubi π+2π=π2π
7 sub2times ππ2π=π
8 2 7 ax-mp π2π=π
9 5 6 8 3eqtrri π=π+-12π
10 9 fveq2i cosπ=cosπ+-12π
11 neg1z 1
12 cosper π1cosπ+-12π=cosπ
13 2 11 12 mp2an cosπ+-12π=cosπ
14 cospi cosπ=1
15 10 13 14 3eqtri cosπ=1