Metamath Proof Explorer


Theorem sinaover2ne0

Description: If A in ( 0 , 2 _pi ) then sin ( A / 2 ) is not 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion sinaover2ne0 A02πsinA20

Proof

Step Hyp Ref Expression
1 elioore A02πA
2 1 recnd A02πA
3 2cnd A02π2
4 picn π
5 4 a1i A02ππ
6 2ne0 20
7 6 a1i A02π20
8 pire π
9 pipos 0<π
10 8 9 gt0ne0ii π0
11 10 a1i A02ππ0
12 2 3 5 7 11 divdiv1d A02πA2π=A2π
13 0zd A02π0
14 2re 2
15 14 8 remulcli 2π
16 15 a1i A02π2π
17 0xr 0*
18 17 a1i A02π0*
19 16 rexrd A02π2π*
20 id A02πA02π
21 ioogtlb 0*2π*A02π0<A
22 18 19 20 21 syl3anc A02π0<A
23 2pos 0<2
24 14 8 23 9 mulgt0ii 0<2π
25 24 a1i A02π0<2π
26 1 16 22 25 divgt0d A02π0<A2π
27 1rp 1+
28 27 a1i A02π1+
29 16 25 elrpd A02π2π+
30 2 div1d A02πA1=A
31 iooltub 0*2π*A02πA<2π
32 18 19 20 31 syl3anc A02πA<2π
33 30 32 eqbrtrd A02πA1<2π
34 1 28 29 33 ltdiv23d A02πA2π<1
35 1e0p1 1=0+1
36 34 35 breqtrdi A02πA2π<0+1
37 btwnnz 00<A2πA2π<0+1¬A2π
38 13 26 36 37 syl3anc A02π¬A2π
39 12 38 eqneltrd A02π¬A2π
40 2 halfcld A02πA2
41 sineq0 A2sinA2=0A2π
42 40 41 syl A02πsinA2=0A2π
43 39 42 mtbird A02π¬sinA2=0
44 43 neqned A02πsinA20