| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. RR ) |
| 2 |
1
|
recnd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. CC ) |
| 3 |
|
2cnd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 2 e. CC ) |
| 4 |
|
picn |
|- _pi e. CC |
| 5 |
4
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> _pi e. CC ) |
| 6 |
|
2ne0 |
|- 2 =/= 0 |
| 7 |
6
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 2 =/= 0 ) |
| 8 |
|
pire |
|- _pi e. RR |
| 9 |
|
pipos |
|- 0 < _pi |
| 10 |
8 9
|
gt0ne0ii |
|- _pi =/= 0 |
| 11 |
10
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> _pi =/= 0 ) |
| 12 |
2 3 5 7 11
|
divdiv1d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) |
| 13 |
|
0zd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 e. ZZ ) |
| 14 |
|
2re |
|- 2 e. RR |
| 15 |
14 8
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 16 |
15
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR ) |
| 17 |
|
0xr |
|- 0 e. RR* |
| 18 |
17
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 e. RR* ) |
| 19 |
16
|
rexrd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR* ) |
| 20 |
|
id |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 21 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* /\ A e. ( 0 (,) ( 2 x. _pi ) ) ) -> 0 < A ) |
| 22 |
18 19 20 21
|
syl3anc |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < A ) |
| 23 |
|
2pos |
|- 0 < 2 |
| 24 |
14 8 23 9
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
| 25 |
24
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( 2 x. _pi ) ) |
| 26 |
1 16 22 25
|
divgt0d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( A / ( 2 x. _pi ) ) ) |
| 27 |
|
1rp |
|- 1 e. RR+ |
| 28 |
27
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 1 e. RR+ ) |
| 29 |
16 25
|
elrpd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR+ ) |
| 30 |
2
|
div1d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / 1 ) = A ) |
| 31 |
|
iooltub |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* /\ A e. ( 0 (,) ( 2 x. _pi ) ) ) -> A < ( 2 x. _pi ) ) |
| 32 |
18 19 20 31
|
syl3anc |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) |
| 33 |
30 32
|
eqbrtrd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / 1 ) < ( 2 x. _pi ) ) |
| 34 |
1 28 29 33
|
ltdiv23d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < 1 ) |
| 35 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 36 |
34 35
|
breqtrdi |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) |
| 37 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( A / ( 2 x. _pi ) ) /\ ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
| 38 |
13 26 36 37
|
syl3anc |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
| 39 |
12 38
|
eqneltrd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( ( A / 2 ) / _pi ) e. ZZ ) |
| 40 |
2
|
halfcld |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / 2 ) e. CC ) |
| 41 |
|
sineq0 |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
| 42 |
40 41
|
syl |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) |
| 43 |
39 42
|
mtbird |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( sin ` ( A / 2 ) ) = 0 ) |
| 44 |
43
|
neqned |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |