| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( K e. ZZ /\ 2 || K ) -> 2 || K ) |
| 2 |
|
2z |
|- 2 e. ZZ |
| 3 |
|
simpl |
|- ( ( K e. ZZ /\ 2 || K ) -> K e. ZZ ) |
| 4 |
|
divides |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
| 5 |
2 3 4
|
sylancr |
|- ( ( K e. ZZ /\ 2 || K ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
| 6 |
1 5
|
mpbid |
|- ( ( K e. ZZ /\ 2 || K ) -> E. n e. ZZ ( n x. 2 ) = K ) |
| 7 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 8 |
|
negcl |
|- ( n e. CC -> -u n e. CC ) |
| 9 |
|
2cn |
|- 2 e. CC |
| 10 |
|
picn |
|- _pi e. CC |
| 11 |
9 10
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 12 |
11
|
a1i |
|- ( n e. CC -> ( 2 x. _pi ) e. CC ) |
| 13 |
8 12
|
mulcld |
|- ( n e. CC -> ( -u n x. ( 2 x. _pi ) ) e. CC ) |
| 14 |
13
|
addlidd |
|- ( n e. CC -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u n x. ( 2 x. _pi ) ) ) |
| 15 |
|
2cnd |
|- ( n e. CC -> 2 e. CC ) |
| 16 |
10
|
a1i |
|- ( n e. CC -> _pi e. CC ) |
| 17 |
8 15 16
|
mulassd |
|- ( n e. CC -> ( ( -u n x. 2 ) x. _pi ) = ( -u n x. ( 2 x. _pi ) ) ) |
| 18 |
17
|
eqcomd |
|- ( n e. CC -> ( -u n x. ( 2 x. _pi ) ) = ( ( -u n x. 2 ) x. _pi ) ) |
| 19 |
|
id |
|- ( n e. CC -> n e. CC ) |
| 20 |
19 15
|
mulneg1d |
|- ( n e. CC -> ( -u n x. 2 ) = -u ( n x. 2 ) ) |
| 21 |
20
|
oveq1d |
|- ( n e. CC -> ( ( -u n x. 2 ) x. _pi ) = ( -u ( n x. 2 ) x. _pi ) ) |
| 22 |
14 18 21
|
3eqtrd |
|- ( n e. CC -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
| 23 |
7 22
|
syl |
|- ( n e. ZZ -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
| 24 |
23
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
| 25 |
19 15
|
mulcld |
|- ( n e. CC -> ( n x. 2 ) e. CC ) |
| 26 |
|
mulneg12 |
|- ( ( ( n x. 2 ) e. CC /\ _pi e. CC ) -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
| 27 |
25 16 26
|
syl2anc |
|- ( n e. CC -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
| 28 |
7 27
|
syl |
|- ( n e. ZZ -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
| 29 |
28
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
| 30 |
|
oveq1 |
|- ( ( n x. 2 ) = K -> ( ( n x. 2 ) x. -u _pi ) = ( K x. -u _pi ) ) |
| 31 |
30
|
adantl |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( ( n x. 2 ) x. -u _pi ) = ( K x. -u _pi ) ) |
| 32 |
24 29 31
|
3eqtrrd |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( K x. -u _pi ) = ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 33 |
32
|
fveq2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
| 34 |
33
|
3adant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
| 35 |
|
0cnd |
|- ( n e. ZZ -> 0 e. CC ) |
| 36 |
|
znegcl |
|- ( n e. ZZ -> -u n e. ZZ ) |
| 37 |
|
cosper |
|- ( ( 0 e. CC /\ -u n e. ZZ ) -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
| 38 |
35 36 37
|
syl2anc |
|- ( n e. ZZ -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
| 40 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
| 41 |
|
iftrue |
|- ( 2 || K -> if ( 2 || K , 1 , -u 1 ) = 1 ) |
| 42 |
40 41
|
eqtr4id |
|- ( 2 || K -> ( cos ` 0 ) = if ( 2 || K , 1 , -u 1 ) ) |
| 43 |
42
|
3ad2ant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` 0 ) = if ( 2 || K , 1 , -u 1 ) ) |
| 44 |
34 39 43
|
3eqtrd |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 45 |
44
|
3exp |
|- ( 2 || K -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 46 |
45
|
adantl |
|- ( ( K e. ZZ /\ 2 || K ) -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 47 |
46
|
rexlimdv |
|- ( ( K e. ZZ /\ 2 || K ) -> ( E. n e. ZZ ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
| 48 |
6 47
|
mpd |
|- ( ( K e. ZZ /\ 2 || K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 49 |
|
odd2np1 |
|- ( K e. ZZ -> ( -. 2 || K <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) ) |
| 50 |
49
|
biimpa |
|- ( ( K e. ZZ /\ -. 2 || K ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) |
| 51 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( K x. -u _pi ) ) |
| 52 |
51
|
eqcomd |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( K x. -u _pi ) = ( ( ( 2 x. n ) + 1 ) x. -u _pi ) ) |
| 53 |
52
|
adantl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( ( ( 2 x. n ) + 1 ) x. -u _pi ) ) |
| 54 |
15 19
|
mulcld |
|- ( n e. CC -> ( 2 x. n ) e. CC ) |
| 55 |
|
1cnd |
|- ( n e. CC -> 1 e. CC ) |
| 56 |
|
negpicn |
|- -u _pi e. CC |
| 57 |
56
|
a1i |
|- ( n e. CC -> -u _pi e. CC ) |
| 58 |
54 55 57
|
adddird |
|- ( n e. CC -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
| 59 |
7 58
|
syl |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
| 60 |
59
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
| 61 |
|
mulneg12 |
|- ( ( ( 2 x. n ) e. CC /\ _pi e. CC ) -> ( -u ( 2 x. n ) x. _pi ) = ( ( 2 x. n ) x. -u _pi ) ) |
| 62 |
54 16 61
|
syl2anc |
|- ( n e. CC -> ( -u ( 2 x. n ) x. _pi ) = ( ( 2 x. n ) x. -u _pi ) ) |
| 63 |
62
|
eqcomd |
|- ( n e. CC -> ( ( 2 x. n ) x. -u _pi ) = ( -u ( 2 x. n ) x. _pi ) ) |
| 64 |
15 19
|
mulneg2d |
|- ( n e. CC -> ( 2 x. -u n ) = -u ( 2 x. n ) ) |
| 65 |
15 8
|
mulcomd |
|- ( n e. CC -> ( 2 x. -u n ) = ( -u n x. 2 ) ) |
| 66 |
64 65
|
eqtr3d |
|- ( n e. CC -> -u ( 2 x. n ) = ( -u n x. 2 ) ) |
| 67 |
66
|
oveq1d |
|- ( n e. CC -> ( -u ( 2 x. n ) x. _pi ) = ( ( -u n x. 2 ) x. _pi ) ) |
| 68 |
63 67 17
|
3eqtrd |
|- ( n e. CC -> ( ( 2 x. n ) x. -u _pi ) = ( -u n x. ( 2 x. _pi ) ) ) |
| 69 |
57
|
mullidd |
|- ( n e. CC -> ( 1 x. -u _pi ) = -u _pi ) |
| 70 |
68 69
|
oveq12d |
|- ( n e. CC -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( ( -u n x. ( 2 x. _pi ) ) + -u _pi ) ) |
| 71 |
13 57
|
addcomd |
|- ( n e. CC -> ( ( -u n x. ( 2 x. _pi ) ) + -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 72 |
70 71
|
eqtrd |
|- ( n e. CC -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 73 |
7 72
|
syl |
|- ( n e. ZZ -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 74 |
73
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 75 |
53 60 74
|
3eqtrd |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 76 |
75
|
3adant1 |
|- ( ( K e. ZZ /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
| 77 |
76
|
fveq2d |
|- ( ( K e. ZZ /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
| 78 |
77
|
3adant1r |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
| 79 |
|
cosper |
|- ( ( -u _pi e. CC /\ -u n e. ZZ ) -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
| 80 |
56 36 79
|
sylancr |
|- ( n e. ZZ -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
| 81 |
80
|
3ad2ant2 |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
| 82 |
|
cosnegpi |
|- ( cos ` -u _pi ) = -u 1 |
| 83 |
|
iffalse |
|- ( -. 2 || K -> if ( 2 || K , 1 , -u 1 ) = -u 1 ) |
| 84 |
82 83
|
eqtr4id |
|- ( -. 2 || K -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
| 85 |
84
|
adantl |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
| 86 |
85
|
3ad2ant1 |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
| 87 |
78 81 86
|
3eqtrd |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 88 |
87
|
rexlimdv3a |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
| 89 |
50 88
|
mpd |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 90 |
48 89
|
pm2.61dan |
|- ( K e. ZZ -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |