Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( K e. ZZ /\ 2 || K ) -> 2 || K ) |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
simpl |
|- ( ( K e. ZZ /\ 2 || K ) -> K e. ZZ ) |
4 |
|
divides |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
5 |
2 3 4
|
sylancr |
|- ( ( K e. ZZ /\ 2 || K ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
6 |
1 5
|
mpbid |
|- ( ( K e. ZZ /\ 2 || K ) -> E. n e. ZZ ( n x. 2 ) = K ) |
7 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
8 |
|
negcl |
|- ( n e. CC -> -u n e. CC ) |
9 |
|
2cn |
|- 2 e. CC |
10 |
|
picn |
|- _pi e. CC |
11 |
9 10
|
mulcli |
|- ( 2 x. _pi ) e. CC |
12 |
11
|
a1i |
|- ( n e. CC -> ( 2 x. _pi ) e. CC ) |
13 |
8 12
|
mulcld |
|- ( n e. CC -> ( -u n x. ( 2 x. _pi ) ) e. CC ) |
14 |
13
|
addid2d |
|- ( n e. CC -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u n x. ( 2 x. _pi ) ) ) |
15 |
|
2cnd |
|- ( n e. CC -> 2 e. CC ) |
16 |
10
|
a1i |
|- ( n e. CC -> _pi e. CC ) |
17 |
8 15 16
|
mulassd |
|- ( n e. CC -> ( ( -u n x. 2 ) x. _pi ) = ( -u n x. ( 2 x. _pi ) ) ) |
18 |
17
|
eqcomd |
|- ( n e. CC -> ( -u n x. ( 2 x. _pi ) ) = ( ( -u n x. 2 ) x. _pi ) ) |
19 |
|
id |
|- ( n e. CC -> n e. CC ) |
20 |
19 15
|
mulneg1d |
|- ( n e. CC -> ( -u n x. 2 ) = -u ( n x. 2 ) ) |
21 |
20
|
oveq1d |
|- ( n e. CC -> ( ( -u n x. 2 ) x. _pi ) = ( -u ( n x. 2 ) x. _pi ) ) |
22 |
14 18 21
|
3eqtrd |
|- ( n e. CC -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
23 |
7 22
|
syl |
|- ( n e. ZZ -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
24 |
23
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( 0 + ( -u n x. ( 2 x. _pi ) ) ) = ( -u ( n x. 2 ) x. _pi ) ) |
25 |
19 15
|
mulcld |
|- ( n e. CC -> ( n x. 2 ) e. CC ) |
26 |
|
mulneg12 |
|- ( ( ( n x. 2 ) e. CC /\ _pi e. CC ) -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
27 |
25 16 26
|
syl2anc |
|- ( n e. CC -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
28 |
7 27
|
syl |
|- ( n e. ZZ -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
29 |
28
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( -u ( n x. 2 ) x. _pi ) = ( ( n x. 2 ) x. -u _pi ) ) |
30 |
|
oveq1 |
|- ( ( n x. 2 ) = K -> ( ( n x. 2 ) x. -u _pi ) = ( K x. -u _pi ) ) |
31 |
30
|
adantl |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( ( n x. 2 ) x. -u _pi ) = ( K x. -u _pi ) ) |
32 |
24 29 31
|
3eqtrrd |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( K x. -u _pi ) = ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) |
33 |
32
|
fveq2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
34 |
33
|
3adant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
35 |
|
0cnd |
|- ( n e. ZZ -> 0 e. CC ) |
36 |
|
znegcl |
|- ( n e. ZZ -> -u n e. ZZ ) |
37 |
|
cosper |
|- ( ( 0 e. CC /\ -u n e. ZZ ) -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
38 |
35 36 37
|
syl2anc |
|- ( n e. ZZ -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
39 |
38
|
3ad2ant2 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( 0 + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` 0 ) ) |
40 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
41 |
|
iftrue |
|- ( 2 || K -> if ( 2 || K , 1 , -u 1 ) = 1 ) |
42 |
40 41
|
eqtr4id |
|- ( 2 || K -> ( cos ` 0 ) = if ( 2 || K , 1 , -u 1 ) ) |
43 |
42
|
3ad2ant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` 0 ) = if ( 2 || K , 1 , -u 1 ) ) |
44 |
34 39 43
|
3eqtrd |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
45 |
44
|
3exp |
|- ( 2 || K -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
46 |
45
|
adantl |
|- ( ( K e. ZZ /\ 2 || K ) -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
47 |
46
|
rexlimdv |
|- ( ( K e. ZZ /\ 2 || K ) -> ( E. n e. ZZ ( n x. 2 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
48 |
6 47
|
mpd |
|- ( ( K e. ZZ /\ 2 || K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
49 |
|
odd2np1 |
|- ( K e. ZZ -> ( -. 2 || K <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) ) |
50 |
49
|
biimpa |
|- ( ( K e. ZZ /\ -. 2 || K ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) |
51 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( K x. -u _pi ) ) |
52 |
51
|
eqcomd |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( K x. -u _pi ) = ( ( ( 2 x. n ) + 1 ) x. -u _pi ) ) |
53 |
52
|
adantl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( ( ( 2 x. n ) + 1 ) x. -u _pi ) ) |
54 |
15 19
|
mulcld |
|- ( n e. CC -> ( 2 x. n ) e. CC ) |
55 |
|
1cnd |
|- ( n e. CC -> 1 e. CC ) |
56 |
|
negpicn |
|- -u _pi e. CC |
57 |
56
|
a1i |
|- ( n e. CC -> -u _pi e. CC ) |
58 |
54 55 57
|
adddird |
|- ( n e. CC -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
59 |
7 58
|
syl |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
60 |
59
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) + 1 ) x. -u _pi ) = ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) ) |
61 |
|
mulneg12 |
|- ( ( ( 2 x. n ) e. CC /\ _pi e. CC ) -> ( -u ( 2 x. n ) x. _pi ) = ( ( 2 x. n ) x. -u _pi ) ) |
62 |
54 16 61
|
syl2anc |
|- ( n e. CC -> ( -u ( 2 x. n ) x. _pi ) = ( ( 2 x. n ) x. -u _pi ) ) |
63 |
62
|
eqcomd |
|- ( n e. CC -> ( ( 2 x. n ) x. -u _pi ) = ( -u ( 2 x. n ) x. _pi ) ) |
64 |
15 19
|
mulneg2d |
|- ( n e. CC -> ( 2 x. -u n ) = -u ( 2 x. n ) ) |
65 |
15 8
|
mulcomd |
|- ( n e. CC -> ( 2 x. -u n ) = ( -u n x. 2 ) ) |
66 |
64 65
|
eqtr3d |
|- ( n e. CC -> -u ( 2 x. n ) = ( -u n x. 2 ) ) |
67 |
66
|
oveq1d |
|- ( n e. CC -> ( -u ( 2 x. n ) x. _pi ) = ( ( -u n x. 2 ) x. _pi ) ) |
68 |
63 67 17
|
3eqtrd |
|- ( n e. CC -> ( ( 2 x. n ) x. -u _pi ) = ( -u n x. ( 2 x. _pi ) ) ) |
69 |
57
|
mulid2d |
|- ( n e. CC -> ( 1 x. -u _pi ) = -u _pi ) |
70 |
68 69
|
oveq12d |
|- ( n e. CC -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( ( -u n x. ( 2 x. _pi ) ) + -u _pi ) ) |
71 |
13 57
|
addcomd |
|- ( n e. CC -> ( ( -u n x. ( 2 x. _pi ) ) + -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
72 |
70 71
|
eqtrd |
|- ( n e. CC -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
73 |
7 72
|
syl |
|- ( n e. ZZ -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
74 |
73
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) x. -u _pi ) + ( 1 x. -u _pi ) ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
75 |
53 60 74
|
3eqtrd |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
76 |
75
|
3adant1 |
|- ( ( K e. ZZ /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. -u _pi ) = ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) |
77 |
76
|
fveq2d |
|- ( ( K e. ZZ /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
78 |
77
|
3adant1r |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) ) |
79 |
|
cosper |
|- ( ( -u _pi e. CC /\ -u n e. ZZ ) -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
80 |
56 36 79
|
sylancr |
|- ( n e. ZZ -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
81 |
80
|
3ad2ant2 |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( -u _pi + ( -u n x. ( 2 x. _pi ) ) ) ) = ( cos ` -u _pi ) ) |
82 |
|
cosnegpi |
|- ( cos ` -u _pi ) = -u 1 |
83 |
|
iffalse |
|- ( -. 2 || K -> if ( 2 || K , 1 , -u 1 ) = -u 1 ) |
84 |
82 83
|
eqtr4id |
|- ( -. 2 || K -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
85 |
84
|
adantl |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
86 |
85
|
3ad2ant1 |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` -u _pi ) = if ( 2 || K , 1 , -u 1 ) ) |
87 |
78 81 86
|
3eqtrd |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
88 |
87
|
rexlimdv3a |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
89 |
50 88
|
mpd |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
90 |
48 89
|
pm2.61dan |
|- ( K e. ZZ -> ( cos ` ( K x. -u _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |