Metamath Proof Explorer


Theorem cossssid3

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)

Ref Expression
Assertion cossssid3 RIuxyuRxuRyx=y

Proof

Step Hyp Ref Expression
1 cossssid2 RIxyuuRxuRyx=y
2 19.23v uuRxuRyx=yuuRxuRyx=y
3 2 albii yuuRxuRyx=yyuuRxuRyx=y
4 alcom yuuRxuRyx=yuyuRxuRyx=y
5 3 4 bitr3i yuuRxuRyx=yuyuRxuRyx=y
6 5 albii xyuuRxuRyx=yxuyuRxuRyx=y
7 alcom xuyuRxuRyx=yuxyuRxuRyx=y
8 1 6 7 3bitri RIuxyuRxuRyx=y