Metamath Proof Explorer


Theorem cphdi

Description: Distributive law for inner product (left-distributivity). Complex version of ipdi . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h ,˙=𝑖W
cphipcj.v V=BaseW
cphdir.P +˙=+W
Assertion cphdi WCPreHilAVBVCVA,˙B+˙C=A,˙B+A,˙C

Proof

Step Hyp Ref Expression
1 cphipcj.h ,˙=𝑖W
2 cphipcj.v V=BaseW
3 cphdir.P +˙=+W
4 cphphl WCPreHilWPreHil
5 eqid ScalarW=ScalarW
6 eqid +ScalarW=+ScalarW
7 5 1 2 3 6 ipdi WPreHilAVBVCVA,˙B+˙C=A,˙B+ScalarWA,˙C
8 4 7 sylan WCPreHilAVBVCVA,˙B+˙C=A,˙B+ScalarWA,˙C
9 cphclm WCPreHilWCMod
10 5 clmadd WCMod+=+ScalarW
11 9 10 syl WCPreHil+=+ScalarW
12 11 adantr WCPreHilAVBVCV+=+ScalarW
13 12 oveqd WCPreHilAVBVCVA,˙B+A,˙C=A,˙B+ScalarWA,˙C
14 8 13 eqtr4d WCPreHilAVBVCVA,˙B+˙C=A,˙B+A,˙C