| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphipcj.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | cphipcj.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | cphdir.P |  |-  .+ = ( +g ` W ) | 
						
							| 4 |  | cphphl |  |-  ( W e. CPreHil -> W e. PreHil ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 7 | 5 1 2 3 6 | ipdi |  |-  ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) ( +g ` ( Scalar ` W ) ) ( A ., C ) ) ) | 
						
							| 8 | 4 7 | sylan |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) ( +g ` ( Scalar ` W ) ) ( A ., C ) ) ) | 
						
							| 9 |  | cphclm |  |-  ( W e. CPreHil -> W e. CMod ) | 
						
							| 10 | 5 | clmadd |  |-  ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( W e. CPreHil -> + = ( +g ` ( Scalar ` W ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> + = ( +g ` ( Scalar ` W ) ) ) | 
						
							| 13 | 12 | oveqd |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., B ) + ( A ., C ) ) = ( ( A ., B ) ( +g ` ( Scalar ` W ) ) ( A ., C ) ) ) | 
						
							| 14 | 8 13 | eqtr4d |  |-  ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) + ( A ., C ) ) ) |