Metamath Proof Explorer


Theorem crctcshlem2

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v V=VtxG
crctcsh.i I=iEdgG
crctcsh.d φFCircuitsGP
crctcsh.n N=F
crctcsh.s φS0..^N
crctcsh.h H=FcyclShiftS
Assertion crctcshlem2 φH=N

Proof

Step Hyp Ref Expression
1 crctcsh.v V=VtxG
2 crctcsh.i I=iEdgG
3 crctcsh.d φFCircuitsGP
4 crctcsh.n N=F
5 crctcsh.s φS0..^N
6 crctcsh.h H=FcyclShiftS
7 crctiswlk FCircuitsGPFWalksGP
8 2 wlkf FWalksGPFWorddomI
9 3 7 8 3syl φFWorddomI
10 elfzoelz S0..^NS
11 5 10 syl φS
12 cshwlen FWorddomISFcyclShiftS=F
13 9 11 12 syl2anc φFcyclShiftS=F
14 6 fveq2i H=FcyclShiftS
15 13 14 4 3eqtr4g φH=N