Metamath Proof Explorer


Theorem crne0

Description: The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion crne0 ABA0B0A+iB0

Proof

Step Hyp Ref Expression
1 neorian A0B0¬A=0B=0
2 ax-icn i
3 2 mul01i i0=0
4 3 oveq2i 0+i0=0+0
5 00id 0+0=0
6 4 5 eqtri 0+i0=0
7 6 eqeq2i A+iB=0+i0A+iB=0
8 0re 0
9 cru AB00A+iB=0+i0A=0B=0
10 8 8 9 mpanr12 ABA+iB=0+i0A=0B=0
11 7 10 bitr3id ABA+iB=0A=0B=0
12 11 necon3abid ABA+iB0¬A=0B=0
13 1 12 bitr4id ABA0B0A+iB0