Metamath Proof Explorer


Theorem crngbascntr

Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses crngbascntr.b B=BaseG
crngbascntr.z Z=CntrmulGrpG
Assertion crngbascntr GCRingB=Z

Proof

Step Hyp Ref Expression
1 crngbascntr.b B=BaseG
2 crngbascntr.z Z=CntrmulGrpG
3 eqid mulGrpG=mulGrpG
4 3 crngmgp GCRingmulGrpGCMnd
5 3 1 mgpbas B=BasemulGrpG
6 5 2 cmnbascntr mulGrpGCMndB=Z
7 4 6 syl GCRingB=Z