Metamath Proof Explorer


Theorem crngridl

Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses crng2idl.i I=LIdealR
crngridl.o O=opprR
Assertion crngridl RCRingI=LIdealO

Proof

Step Hyp Ref Expression
1 crng2idl.i I=LIdealR
2 crngridl.o O=opprR
3 eqidd RCRingBaseR=BaseR
4 eqid BaseR=BaseR
5 2 4 opprbas BaseR=BaseO
6 5 a1i RCRingBaseR=BaseO
7 ssv BaseRV
8 7 a1i RCRingBaseRV
9 eqid +R=+R
10 2 9 oppradd +R=+O
11 10 oveqi x+Ry=x+Oy
12 11 a1i RCRingxVyVx+Ry=x+Oy
13 ovexd RCRingxBaseRyBaseRxRyV
14 eqid R=R
15 eqid O=O
16 4 14 2 15 crngoppr RCRingxBaseRyBaseRxRy=xOy
17 16 3expb RCRingxBaseRyBaseRxRy=xOy
18 3 6 8 12 13 17 lidlrsppropd RCRingLIdealR=LIdealORSpanR=RSpanO
19 18 simpld RCRingLIdealR=LIdealO
20 1 19 eqtrid RCRingI=LIdealO