Metamath Proof Explorer


Theorem csbaovg

Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion csbaovg A D A / x B F C = A / x B A / x F A / x C

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x B F C = A / x B F C
2 csbeq1 y = A y / x F = A / x F
3 csbeq1 y = A y / x B = A / x B
4 csbeq1 y = A y / x C = A / x C
5 2 3 4 aoveq123d y = A y / x B y / x F y / x C = A / x B A / x F A / x C
6 1 5 eqeq12d y = A y / x B F C = y / x B y / x F y / x C A / x B F C = A / x B A / x F A / x C
7 vex y V
8 nfcsb1v _ x y / x B
9 nfcsb1v _ x y / x F
10 nfcsb1v _ x y / x C
11 8 9 10 nfaov _ x y / x B y / x F y / x C
12 csbeq1a x = y F = y / x F
13 csbeq1a x = y B = y / x B
14 csbeq1a x = y C = y / x C
15 12 13 14 aoveq123d x = y B F C = y / x B y / x F y / x C
16 7 11 15 csbief y / x B F C = y / x B y / x F y / x C
17 6 16 vtoclg A D A / x B F C = A / x B A / x F A / x C