Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ (( B F C )) = [_ A / x ]_ (( B F C )) ) |
2 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F ) |
3 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
4 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
5 |
2 3 4
|
aoveq123d |
|- ( y = A -> (( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )) = (( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C )) ) |
6 |
1 5
|
eqeq12d |
|- ( y = A -> ( [_ y / x ]_ (( B F C )) = (( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )) <-> [_ A / x ]_ (( B F C )) = (( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C )) ) ) |
7 |
|
vex |
|- y e. _V |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
9 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ F |
10 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
11 |
8 9 10
|
nfaov |
|- F/_ x (( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )) |
12 |
|
csbeq1a |
|- ( x = y -> F = [_ y / x ]_ F ) |
13 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
14 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
15 |
12 13 14
|
aoveq123d |
|- ( x = y -> (( B F C )) = (( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )) ) |
16 |
7 11 15
|
csbief |
|- [_ y / x ]_ (( B F C )) = (( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C )) |
17 |
6 16
|
vtoclg |
|- ( A e. D -> [_ A / x ]_ (( B F C )) = (( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C )) ) |