Metamath Proof Explorer


Theorem csbaovg

Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion csbaovg ( 𝐴𝐷 𝐴 / 𝑥 (( 𝐵 𝐹 𝐶 )) = (( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )) )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 (( 𝐵 𝐹 𝐶 )) = 𝐴 / 𝑥 (( 𝐵 𝐹 𝐶 )) )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐹 = 𝐴 / 𝑥 𝐹 )
3 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
4 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐶 )
5 2 3 4 aoveq123d ( 𝑦 = 𝐴 → (( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 )) = (( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )) )
6 1 5 eqeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 (( 𝐵 𝐹 𝐶 )) = (( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 )) ↔ 𝐴 / 𝑥 (( 𝐵 𝐹 𝐶 )) = (( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )) ) )
7 vex 𝑦 ∈ V
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 nfcsb1v 𝑥 𝑦 / 𝑥 𝐹
10 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
11 8 9 10 nfaov 𝑥 (( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 ))
12 csbeq1a ( 𝑥 = 𝑦𝐹 = 𝑦 / 𝑥 𝐹 )
13 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
14 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
15 12 13 14 aoveq123d ( 𝑥 = 𝑦 → (( 𝐵 𝐹 𝐶 )) = (( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 )) )
16 7 11 15 csbief 𝑦 / 𝑥 (( 𝐵 𝐹 𝐶 )) = (( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 ))
17 6 16 vtoclg ( 𝐴𝐷 𝐴 / 𝑥 (( 𝐵 𝐹 𝐶 )) = (( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )) )