Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) = ⦋ 𝐴 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) ) |
2 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐹 = ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) |
3 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
4 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
5 |
2 3 4
|
aoveq123d |
⊢ ( 𝑦 = 𝐴 → (( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 )) = (( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 )) ) |
6 |
1 5
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) = (( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 )) ↔ ⦋ 𝐴 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) = (( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 )) ) ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
11 |
8 9 10
|
nfaov |
⊢ Ⅎ 𝑥 (( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 )) |
12 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐹 = ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ) |
13 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
15 |
12 13 14
|
aoveq123d |
⊢ ( 𝑥 = 𝑦 → (( 𝐵 𝐹 𝐶 )) = (( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 )) ) |
16 |
7 11 15
|
csbief |
⊢ ⦋ 𝑦 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) = (( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ⦋ 𝑦 / 𝑥 ⦌ 𝐹 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 )) |
17 |
6 16
|
vtoclg |
⊢ ( 𝐴 ∈ 𝐷 → ⦋ 𝐴 / 𝑥 ⦌ (( 𝐵 𝐹 𝐶 )) = (( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 )) ) |