Metamath Proof Explorer


Theorem csbaovg

Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion csbaovg ADA/xBFC=A/xBA/xFA/xC

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xBFC=A/xBFC
2 csbeq1 y=Ay/xF=A/xF
3 csbeq1 y=Ay/xB=A/xB
4 csbeq1 y=Ay/xC=A/xC
5 2 3 4 aoveq123d y=Ay/xBy/xFy/xC=A/xBA/xFA/xC
6 1 5 eqeq12d y=Ay/xBFC=y/xBy/xFy/xCA/xBFC=A/xBA/xFA/xC
7 vex yV
8 nfcsb1v _xy/xB
9 nfcsb1v _xy/xF
10 nfcsb1v _xy/xC
11 8 9 10 nfaov _xy/xBy/xFy/xC
12 csbeq1a x=yF=y/xF
13 csbeq1a x=yB=y/xB
14 csbeq1a x=yC=y/xC
15 12 13 14 aoveq123d x=yBFC=y/xBy/xFy/xC
16 7 11 15 csbief y/xBFC=y/xBy/xFy/xC
17 6 16 vtoclg ADA/xBFC=A/xBA/xFA/xC