Metamath Proof Explorer


Theorem csbconstg

Description: Substitution doesn't affect a constant B (in which x does not occur). csbconstgf with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012) Avoid ax-12 . (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Assertion csbconstg AVA/xB=B

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xB=A/xB
2 1 eqeq1d y=Ay/xB=BA/xB=B
3 df-csb y/xB=z|[˙y/x]˙zB
4 sbcg yV[˙y/x]˙zBzB
5 4 elv [˙y/x]˙zBzB
6 5 abbii z|[˙y/x]˙zB=z|zB
7 abid2 z|zB=B
8 3 6 7 3eqtri y/xB=B
9 2 8 vtoclg AVA/xB=B