Metamath Proof Explorer


Theorem csbgfi

Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbgfi.1 AV
csbgfi.2 _xB
Assertion csbgfi A/xB=B

Proof

Step Hyp Ref Expression
1 csbgfi.1 AV
2 csbgfi.2 _xB
3 df-csb A/xB=y|[˙A/x]˙yB
4 3 eqabri yA/xB[˙A/x]˙yB
5 2 nfcri xyB
6 1 5 sbcgfi [˙A/x]˙yByB
7 4 6 bitri yA/xByB
8 7 eqriv A/xB=B