Metamath Proof Explorer


Theorem csbie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of csbie avoids a disjointness condition on x , A and x , D by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016)

Ref Expression
Hypotheses csbie2g.1 x=yB=C
csbie2g.2 y=AC=D
Assertion csbie2g AVA/xB=D

Proof

Step Hyp Ref Expression
1 csbie2g.1 x=yB=C
2 csbie2g.2 y=AC=D
3 df-csb A/xB=z|[˙A/x]˙zB
4 1 eleq2d x=yzBzC
5 2 eleq2d y=AzCzD
6 4 5 sbcie2g AV[˙A/x]˙zBzD
7 6 eqabcdv AVz|[˙A/x]˙zB=D
8 3 7 eqtrid AVA/xB=D