Metamath Proof Explorer


Theorem csbif

Description: Distribute proper substitution through the conditional operator. (Contributed by NM, 24-Feb-2013) (Revised by NM, 19-Aug-2018)

Ref Expression
Assertion csbif A/xifφBC=if[˙A/x]˙φA/xBA/xC

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xifφBC=A/xifφBC
2 dfsbcq2 y=Ayxφ[˙A/x]˙φ
3 csbeq1 y=Ay/xB=A/xB
4 csbeq1 y=Ay/xC=A/xC
5 2 3 4 ifbieq12d y=Aifyxφy/xBy/xC=if[˙A/x]˙φA/xBA/xC
6 1 5 eqeq12d y=Ay/xifφBC=ifyxφy/xBy/xCA/xifφBC=if[˙A/x]˙φA/xBA/xC
7 vex yV
8 nfs1v xyxφ
9 nfcsb1v _xy/xB
10 nfcsb1v _xy/xC
11 8 9 10 nfif _xifyxφy/xBy/xC
12 sbequ12 x=yφyxφ
13 csbeq1a x=yB=y/xB
14 csbeq1a x=yC=y/xC
15 12 13 14 ifbieq12d x=yifφBC=ifyxφy/xBy/xC
16 7 11 15 csbief y/xifφBC=ifyxφy/xBy/xC
17 6 16 vtoclg AVA/xifφBC=if[˙A/x]˙φA/xBA/xC
18 csbprc ¬AVA/xifφBC=
19 csbprc ¬AVA/xB=
20 csbprc ¬AVA/xC=
21 19 20 ifeq12d ¬AVif[˙A/x]˙φA/xBA/xC=if[˙A/x]˙φ
22 ifid if[˙A/x]˙φ=
23 21 22 eqtr2di ¬AV=if[˙A/x]˙φA/xBA/xC
24 18 23 eqtrd ¬AVA/xifφBC=if[˙A/x]˙φA/xBA/xC
25 17 24 pm2.61i A/xifφBC=if[˙A/x]˙φA/xBA/xC