Metamath Proof Explorer


Theorem csbingVD

Description: Virtual deduction proof of csbin . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbin is csbingVD without virtual deductions and was automatically derived from csbingVD .

1:: |- (. A e. B ->. A e. B ).
2:: |- ( C i^i D ) = { y | ( y e. C /\ y e. D ) }
20:2: |- A. x ( C i^i D ) = { y | ( y e. C /\ y e. D ) }
30:1,20: |- (. A e. B ->. [. A / x ]. ( C i^i D ) = { y | ( y e. C /\ y e. D ) } ).
3:1,30: |- (. A e. B ->. [_ A / x ]_ ( C i^i D ) = [_ A / x ]_ { y | ( y e. C /\ y e. D ) } ).
4:1: |- (. A e. B ->. [_ A / x ]_ { y | ( y e. C /\ y e. D ) } = { y | [. A / x ]. ( y e. C /\ y e. D ) } ).
5:3,4: |- (. A e. B ->. [_ A / x ]_ ( C i^i D ) = { y | [. A / x ]. ( y e. C /\ y e. D ) } ).
6:1: |- (. A e. B ->. ( [. A / x ]. y e. C <-> y e. [_ A / x ]_ C ) ).
7:1: |- (. A e. B ->. ( [. A / x ]. y e. D <-> y e. [_ A / x ]_ D ) ).
8:6,7: |- (. A e. B ->. ( ( [. A / x ]. y e. C /\ [. A / x ]. y e. D ) <-> ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) ) ).
9:1: |- (. A e. B ->. ( [. A / x ]. ( y e. C /\ y e. D ) <-> ( [. A / x ]. y e. C /\ [. A / x ]. y e. D ) ) ).
10:9,8: |- (. A e. B ->. ( [. A / x ]. ( y e. C /\ y e. D ) <-> ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) ) ).
11:10: |- (. A e. B ->. A. y ( [. A / x ]. ( y e. C /\ y e. D ) <-> ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) ) ).
12:11: |- (. A e. B ->. { y | [. A / x ]. ( y e. C /\ y e. D ) } = { y | ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) } ).
13:5,12: |- (. A e. B ->. [_ A / x ]_ ( C i^i D ) = { y | ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) } ).
14:: |- ( [_ A / x ]_ C i^i [_ A / x ]_ D ) = { y | ( y e. [_ A / x ]_ C /\ y e. [_ A / x ]_ D ) }
15:13,14: |- (. A e. B ->. [_ A / x ]_ ( C i^i D ) = ( [_ A / x ]_ C i^i [_ A / x ]_ D ) ).
qed:15: |- ( A e. B -> [_ A / x ]_ ( C i^i D ) = ( [_ A / x ]_ C i^i [_ A / x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbingVD ABA/xCD=A/xCA/xD

Proof

Step Hyp Ref Expression
1 idn1 ABAB
2 df-in CD=y|yCyD
3 2 ax-gen xCD=y|yCyD
4 spsbc ABxCD=y|yCyD[˙A/x]˙CD=y|yCyD
5 1 3 4 e10 AB[˙A/x]˙CD=y|yCyD
6 sbceqg AB[˙A/x]˙CD=y|yCyDA/xCD=A/xy|yCyD
7 6 biimpd AB[˙A/x]˙CD=y|yCyDA/xCD=A/xy|yCyD
8 1 5 7 e11 ABA/xCD=A/xy|yCyD
9 csbab A/xy|yCyD=y|[˙A/x]˙yCyD
10 9 a1i ABA/xy|yCyD=y|[˙A/x]˙yCyD
11 1 10 e1a ABA/xy|yCyD=y|[˙A/x]˙yCyD
12 eqeq1 A/xCD=A/xy|yCyDA/xCD=y|[˙A/x]˙yCyDA/xy|yCyD=y|[˙A/x]˙yCyD
13 12 biimprd A/xCD=A/xy|yCyDA/xy|yCyD=y|[˙A/x]˙yCyDA/xCD=y|[˙A/x]˙yCyD
14 8 11 13 e11 ABA/xCD=y|[˙A/x]˙yCyD
15 sbcan [˙A/x]˙yCyD[˙A/x]˙yC[˙A/x]˙yD
16 15 a1i AB[˙A/x]˙yCyD[˙A/x]˙yC[˙A/x]˙yD
17 1 16 e1a AB[˙A/x]˙yCyD[˙A/x]˙yC[˙A/x]˙yD
18 sbcel2 [˙A/x]˙yCyA/xC
19 18 a1i AB[˙A/x]˙yCyA/xC
20 1 19 e1a AB[˙A/x]˙yCyA/xC
21 sbcel2 [˙A/x]˙yDyA/xD
22 21 a1i AB[˙A/x]˙yDyA/xD
23 1 22 e1a AB[˙A/x]˙yDyA/xD
24 pm4.38 [˙A/x]˙yCyA/xC[˙A/x]˙yDyA/xD[˙A/x]˙yC[˙A/x]˙yDyA/xCyA/xD
25 24 ex [˙A/x]˙yCyA/xC[˙A/x]˙yDyA/xD[˙A/x]˙yC[˙A/x]˙yDyA/xCyA/xD
26 20 23 25 e11 AB[˙A/x]˙yC[˙A/x]˙yDyA/xCyA/xD
27 bibi1 [˙A/x]˙yCyD[˙A/x]˙yC[˙A/x]˙yD[˙A/x]˙yCyDyA/xCyA/xD[˙A/x]˙yC[˙A/x]˙yDyA/xCyA/xD
28 27 biimprd [˙A/x]˙yCyD[˙A/x]˙yC[˙A/x]˙yD[˙A/x]˙yC[˙A/x]˙yDyA/xCyA/xD[˙A/x]˙yCyDyA/xCyA/xD
29 17 26 28 e11 AB[˙A/x]˙yCyDyA/xCyA/xD
30 29 gen11 ABy[˙A/x]˙yCyDyA/xCyA/xD
31 abbib y|[˙A/x]˙yCyD=y|yA/xCyA/xDy[˙A/x]˙yCyDyA/xCyA/xD
32 31 biimpri y[˙A/x]˙yCyDyA/xCyA/xDy|[˙A/x]˙yCyD=y|yA/xCyA/xD
33 30 32 e1a ABy|[˙A/x]˙yCyD=y|yA/xCyA/xD
34 eqeq1 A/xCD=y|[˙A/x]˙yCyDA/xCD=y|yA/xCyA/xDy|[˙A/x]˙yCyD=y|yA/xCyA/xD
35 34 biimprd A/xCD=y|[˙A/x]˙yCyDy|[˙A/x]˙yCyD=y|yA/xCyA/xDA/xCD=y|yA/xCyA/xD
36 14 33 35 e11 ABA/xCD=y|yA/xCyA/xD
37 df-in A/xCA/xD=y|yA/xCyA/xD
38 eqeq2 A/xCA/xD=y|yA/xCyA/xDA/xCD=A/xCA/xDA/xCD=y|yA/xCyA/xD
39 38 biimprcd A/xCD=y|yA/xCyA/xDA/xCA/xD=y|yA/xCyA/xDA/xCD=A/xCA/xD
40 36 37 39 e10 ABA/xCD=A/xCA/xD
41 40 in1 ABA/xCD=A/xCA/xD