Metamath Proof Explorer


Theorem csbnestgf

Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgfw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)

Ref Expression
Assertion csbnestgf AVy_xCA/xB/yC=A/xB/yC

Proof

Step Hyp Ref Expression
1 elex AVAV
2 df-csb B/yC=z|[˙B/y]˙zC
3 2 eqabri zB/yC[˙B/y]˙zC
4 3 sbcbii [˙A/x]˙zB/yC[˙A/x]˙[˙B/y]˙zC
5 nfcr _xCxzC
6 5 alimi y_xCyxzC
7 sbcnestgf AVyxzC[˙A/x]˙[˙B/y]˙zC[˙A/xB/y]˙zC
8 6 7 sylan2 AVy_xC[˙A/x]˙[˙B/y]˙zC[˙A/xB/y]˙zC
9 4 8 bitrid AVy_xC[˙A/x]˙zB/yC[˙A/xB/y]˙zC
10 9 abbidv AVy_xCz|[˙A/x]˙zB/yC=z|[˙A/xB/y]˙zC
11 1 10 sylan AVy_xCz|[˙A/x]˙zB/yC=z|[˙A/xB/y]˙zC
12 df-csb A/xB/yC=z|[˙A/x]˙zB/yC
13 df-csb A/xB/yC=z|[˙A/xB/y]˙zC
14 11 12 13 3eqtr4g AVy_xCA/xB/yC=A/xB/yC