Metamath Proof Explorer


Theorem csbnestgfw

Description: Nest the composition of two substitutions. Version of csbnestgf with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgfw AVy_xCA/xB/yC=A/xB/yC

Proof

Step Hyp Ref Expression
1 elex AVAV
2 df-csb B/yC=z|[˙B/y]˙zC
3 2 eqabri zB/yC[˙B/y]˙zC
4 3 sbcbii [˙A/x]˙zB/yC[˙A/x]˙[˙B/y]˙zC
5 nfcr _xCxzC
6 5 alimi y_xCyxzC
7 sbcnestgfw AVyxzC[˙A/x]˙[˙B/y]˙zC[˙A/xB/y]˙zC
8 6 7 sylan2 AVy_xC[˙A/x]˙[˙B/y]˙zC[˙A/xB/y]˙zC
9 4 8 bitrid AVy_xC[˙A/x]˙zB/yC[˙A/xB/y]˙zC
10 9 abbidv AVy_xCz|[˙A/x]˙zB/yC=z|[˙A/xB/y]˙zC
11 1 10 sylan AVy_xCz|[˙A/x]˙zB/yC=z|[˙A/xB/y]˙zC
12 df-csb A/xB/yC=z|[˙A/x]˙zB/yC
13 df-csb A/xB/yC=z|[˙A/xB/y]˙zC
14 11 12 13 3eqtr4g AVy_xCA/xB/yC=A/xB/yC