Metamath Proof Explorer


Theorem csbopeq1a

Description: Equality theorem for substitution of a class A for an ordered pair <. x , y >. in B (analogue of csbeq1a ). (Contributed by NM, 19-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion csbopeq1a A=xy1stA/x2ndA/yB=B

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 op2ndd A=xy2ndA=y
4 3 eqcomd A=xyy=2ndA
5 csbeq1a y=2ndAB=2ndA/yB
6 4 5 syl A=xyB=2ndA/yB
7 1 2 op1std A=xy1stA=x
8 7 eqcomd A=xyx=1stA
9 csbeq1a x=1stA2ndA/yB=1stA/x2ndA/yB
10 8 9 syl A=xy2ndA/yB=1stA/x2ndA/yB
11 6 10 eqtr2d A=xy1stA/x2ndA/yB=B