Metamath Proof Explorer


Theorem csbpredg

Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbpredg A V A / x Pred R D X = Pred A / x R A / x D A / x X

Proof

Step Hyp Ref Expression
1 csbin A / x D R -1 X = A / x D A / x R -1 X
2 csbima12 A / x R -1 X = A / x R -1 A / x X
3 csbcnv A / x R -1 = A / x R -1
4 3 imaeq1i A / x R -1 A / x X = A / x R -1 A / x X
5 csbsng A V A / x X = A / x X
6 5 imaeq2d A V A / x R -1 A / x X = A / x R -1 A / x X
7 4 6 eqtr3id A V A / x R -1 A / x X = A / x R -1 A / x X
8 2 7 eqtrid A V A / x R -1 X = A / x R -1 A / x X
9 8 ineq2d A V A / x D A / x R -1 X = A / x D A / x R -1 A / x X
10 1 9 eqtrid A V A / x D R -1 X = A / x D A / x R -1 A / x X
11 df-pred Pred R D X = D R -1 X
12 11 csbeq2i A / x Pred R D X = A / x D R -1 X
13 df-pred Pred A / x R A / x D A / x X = A / x D A / x R -1 A / x X
14 10 12 13 3eqtr4g A V A / x Pred R D X = Pred A / x R A / x D A / x X