Metamath Proof Explorer


Theorem csbpredg

Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbpredg AVA/xPredRDX=PredA/xRA/xDA/xX

Proof

Step Hyp Ref Expression
1 csbin A/xDR-1X=A/xDA/xR-1X
2 csbima12 A/xR-1X=A/xR-1A/xX
3 csbcnv A/xR-1=A/xR-1
4 3 imaeq1i A/xR-1A/xX=A/xR-1A/xX
5 csbsng AVA/xX=A/xX
6 5 imaeq2d AVA/xR-1A/xX=A/xR-1A/xX
7 4 6 eqtr3id AVA/xR-1A/xX=A/xR-1A/xX
8 2 7 eqtrid AVA/xR-1X=A/xR-1A/xX
9 8 ineq2d AVA/xDA/xR-1X=A/xDA/xR-1A/xX
10 1 9 eqtrid AVA/xDR-1X=A/xDA/xR-1A/xX
11 df-pred PredRDX=DR-1X
12 11 csbeq2i A/xPredRDX=A/xDR-1X
13 df-pred PredA/xRA/xDA/xX=A/xDA/xR-1A/xX
14 10 12 13 3eqtr4g AVA/xPredRDX=PredA/xRA/xDA/xX