Metamath Proof Explorer


Theorem cshnz

Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018) (Revised by AV, 17-Nov-2018)

Ref Expression
Assertion cshnz ¬NWcyclShiftN=

Proof

Step Hyp Ref Expression
1 df-csh cyclShift=wf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw
2 0ex V
3 ovex wsubstrnmodww++wprefixnmodwV
4 2 3 ifex ifw=wsubstrnmodww++wprefixnmodwV
5 1 4 dmmpo domcyclShift=f|l0fFn0..^l×
6 id ¬N¬N
7 6 intnand ¬N¬Wf|l0fFn0..^lN
8 ndmovg domcyclShift=f|l0fFn0..^l׬Wf|l0fFn0..^lNWcyclShiftN=
9 5 7 8 sylancr ¬NWcyclShiftN=