Metamath Proof Explorer


Theorem cvlatexch1

Description: Atom exchange property. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l ˙=K
cvlatexch.j ˙=joinK
cvlatexch.a A=AtomsK
Assertion cvlatexch1 KCvLatPAQARAPRP˙R˙QQ˙R˙P

Proof

Step Hyp Ref Expression
1 cvlatexch.l ˙=K
2 cvlatexch.j ˙=joinK
3 cvlatexch.a A=AtomsK
4 1 2 3 cvlatexchb1 KCvLatPAQARAPRP˙R˙QR˙P=R˙Q
5 cvllat KCvLatKLat
6 5 3ad2ant1 KCvLatPAQARAPRKLat
7 simp23 KCvLatPAQARAPRRA
8 eqid BaseK=BaseK
9 8 3 atbase RARBaseK
10 7 9 syl KCvLatPAQARAPRRBaseK
11 simp22 KCvLatPAQARAPRQA
12 8 3 atbase QAQBaseK
13 11 12 syl KCvLatPAQARAPRQBaseK
14 8 1 2 latlej2 KLatRBaseKQBaseKQ˙R˙Q
15 6 10 13 14 syl3anc KCvLatPAQARAPRQ˙R˙Q
16 breq2 R˙P=R˙QQ˙R˙PQ˙R˙Q
17 15 16 syl5ibrcom KCvLatPAQARAPRR˙P=R˙QQ˙R˙P
18 4 17 sylbid KCvLatPAQARAPRP˙R˙QQ˙R˙P