Metamath Proof Explorer


Theorem cvmopn

Description: A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion cvmopn F C CovMap J A C F A J

Proof

Step Hyp Ref Expression
1 eqid k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 eqid C = C
3 1 2 cvmopnlem F C CovMap J A C F A J