Metamath Proof Explorer


Theorem cvrnle

Description: The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses cvrle.b B = Base K
cvrle.l ˙ = K
cvrle.c C = K
Assertion cvrnle K Poset X B Y B X C Y ¬ Y ˙ X

Proof

Step Hyp Ref Expression
1 cvrle.b B = Base K
2 cvrle.l ˙ = K
3 cvrle.c C = K
4 eqid < K = < K
5 1 4 3 cvrlt K Poset X B Y B X C Y X < K Y
6 1 2 4 pltnle K Poset X B Y B X < K Y ¬ Y ˙ X
7 5 6 syldan K Poset X B Y B X C Y ¬ Y ˙ X