Metamath Proof Explorer


Theorem cxpefd

Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
cxpefd.3 φB
Assertion cxpefd φAB=eBlogA

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 cxpefd.3 φB
4 cxpef AA0BAB=eBlogA
5 1 2 3 4 syl3anc φAB=eBlogA