Metamath Proof Explorer


Theorem cxprecd

Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φA+
cxprecd.2 φB
Assertion cxprecd φ1AB=1AB

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φA+
2 cxprecd.2 φB
3 cxprec A+B1AB=1AB
4 1 2 3 syl2anc φ1AB=1AB