Metamath Proof Explorer
		
		
		
		Description:  Complex exponentiation of a reciprocal.  (Contributed by Mario
         Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rpcxpcld.1 |  | 
					
						|  |  | cxprecd.2 |  | 
				
					|  | Assertion | cxprecd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcxpcld.1 |  | 
						
							| 2 |  | cxprecd.2 |  | 
						
							| 3 |  | cxprec |  | 
						
							| 4 | 1 2 3 | syl2anc |  |