Metamath Proof Explorer


Theorem cxprec

Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxprec A + B 1 A B = 1 A B

Proof

Step Hyp Ref Expression
1 rpcn A + A
2 cxpcl A B A B
3 1 2 sylan A + B A B
4 rpreccl A + 1 A +
5 4 rpcnd A + 1 A
6 cxpcl 1 A B 1 A B
7 5 6 sylan A + B 1 A B
8 1 adantr A + B A
9 rpne0 A + A 0
10 9 adantr A + B A 0
11 simpr A + B B
12 cxpne0 A A 0 B A B 0
13 8 10 11 12 syl3anc A + B A B 0
14 8 10 recidd A + B A 1 A = 1
15 14 oveq1d A + B A 1 A B = 1 B
16 rprege0 A + A 0 A
17 16 adantr A + B A 0 A
18 4 rprege0d A + 1 A 0 1 A
19 18 adantr A + B 1 A 0 1 A
20 mulcxp A 0 A 1 A 0 1 A B A 1 A B = A B 1 A B
21 17 19 11 20 syl3anc A + B A 1 A B = A B 1 A B
22 1cxp B 1 B = 1
23 11 22 syl A + B 1 B = 1
24 15 21 23 3eqtr3d A + B A B 1 A B = 1
25 3 7 13 24 mvllmuld A + B 1 A B = 1 A B