Metamath Proof Explorer
Description: Complex exponentiation of a reciprocal. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpcxpcld.1 |
|
|
|
cxprecd.2 |
|
|
Assertion |
cxprecd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcxpcld.1 |
|
| 2 |
|
cxprecd.2 |
|
| 3 |
|
cxprec |
|
| 4 |
1 2 3
|
syl2anc |
|