Metamath Proof Explorer


Theorem cxpval

Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpval A B A B = if A = 0 if B = 0 1 0 e B log A

Proof

Step Hyp Ref Expression
1 simpl x = A y = B x = A
2 1 eqeq1d x = A y = B x = 0 A = 0
3 simpr x = A y = B y = B
4 3 eqeq1d x = A y = B y = 0 B = 0
5 4 ifbid x = A y = B if y = 0 1 0 = if B = 0 1 0
6 1 fveq2d x = A y = B log x = log A
7 3 6 oveq12d x = A y = B y log x = B log A
8 7 fveq2d x = A y = B e y log x = e B log A
9 2 5 8 ifbieq12d x = A y = B if x = 0 if y = 0 1 0 e y log x = if A = 0 if B = 0 1 0 e B log A
10 df-cxp c = x , y if x = 0 if y = 0 1 0 e y log x
11 ax-1cn 1
12 0cn 0
13 11 12 ifcli if B = 0 1 0
14 13 elexi if B = 0 1 0 V
15 fvex e B log A V
16 14 15 ifex if A = 0 if B = 0 1 0 e B log A V
17 9 10 16 ovmpoa A B A B = if A = 0 if B = 0 1 0 e B log A