Metamath Proof Explorer


Theorem cycpm2cl

Description: Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c C=toCycD
cycpm2.d φDV
cycpm2.i φID
cycpm2.j φJD
cycpm2.1 φIJ
cycpm2cl.s S=SymGrpD
Assertion cycpm2cl φC⟨“IJ”⟩BaseS

Proof

Step Hyp Ref Expression
1 cycpm2.c C=toCycD
2 cycpm2.d φDV
3 cycpm2.i φID
4 cycpm2.j φJD
5 cycpm2.1 φIJ
6 cycpm2cl.s S=SymGrpD
7 3 4 s2cld φ⟨“IJ”⟩WordD
8 3 4 5 s2f1 φ⟨“IJ”⟩:dom⟨“IJ”⟩1-1D
9 1 2 7 8 6 cycpmcl φC⟨“IJ”⟩BaseS