Metamath Proof Explorer


Theorem dalawlem14

Description: Lemma for dalaw . Combine dalawlem10 and dalawlem13 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
dalawlem2.o O=LPlanesK
Assertion dalawlem14 KHL¬P˙Q˙RO¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 dalawlem2.o O=LPlanesK
6 ianor ¬P˙Q˙RO¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙P¬P˙Q˙RO¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙P
7 1 2 3 4 5 dalawlem13 KHL¬P˙Q˙ROP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
8 7 3expib KHL¬P˙Q˙ROP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
9 8 3exp KHL¬P˙Q˙ROP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
10 1 2 3 4 dalawlem10 KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
11 10 3expib KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
12 11 3exp KHL¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
13 9 12 jaod KHL¬P˙Q˙RO¬¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
14 6 13 biimtrid KHL¬P˙Q˙RO¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
15 14 3imp KHL¬P˙Q˙RO¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S
16 15 3impib KHL¬P˙Q˙RO¬P˙S˙Q˙T˙P˙Q¬P˙S˙Q˙T˙Q˙R¬P˙S˙Q˙T˙R˙PP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S